Cho hàm số \(y=\dfrac{2x+1}{x-2}\). Khẳng định nào dưới đây là đúng?
A.
Đồ thị hàm số có tiệm cận đứng là \(x=2\).
B.
Hàm số có cực trị.
C.
Đồ thị hàm số đi qua điểm \(A(1;3)\).
D.
Hàm số nghịch biến trên \(\left( -\infty ;2 \right)\cup \left( 2;+\infty \right)\).
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Xét hàm số \(y=\dfrac{2x+1}{x-2}\):
+) \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{2x + 1}}{{x - 2}} = + \infty ,\mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2x + 1}}{{x - 2}} = - \infty \)
Đồ thị hàm số có tiệm cận đứng là \(x=2\). Phương án A: đúng.
+) \(y'=-\dfrac{5}{{{(x-2)}^{2}}}<0,\,\,\forall x\ne 2\) \(\Rightarrow \) Hàm số \(y=\dfrac{2x+1}{x-2}\) không có cực trị và hàm số nghịch biến trên các khoảng \(\left( -\infty ;2 \right);\,\,\left( 2;+\infty \right)\). Phương án B và D: sai.
+) Ta có: \(3=\dfrac{2.1+1}{1-2}\) vô lí \(\Rightarrow \) Đồ thị hàm số không đi qua điểm\(A(1;3)\). Phương án C: sai.
Hướng dẫn giải:
- Tìm các tiệm cận đứng, ngang của đồ thị hàm số.
- Tìm các khoảng đồng biến nghịch biến của hàm số.
- Tìm các cực trị và xét tính đi qua một điểm của đồ thị hàm số.
Xét hàm số \(y=\dfrac{2x+1}{x-2}\):
+) \(\mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{2x + 1}}{{x - 2}} = + \infty ,\mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{2x + 1}}{{x - 2}} = - \infty \)
Đồ thị hàm số có tiệm cận đứng là \(x=2\). Phương án A: đúng.
+) \(y'=-\dfrac{5}{{{(x-2)}^{2}}}<0,\,\,\forall x\ne 2\) \(\Rightarrow \) Hàm số \(y=\dfrac{2x+1}{x-2}\) không có cực trị và hàm số nghịch biến trên các khoảng \(\left( -\infty ;2 \right);\,\,\left( 2;+\infty \right)\). Phương án B và D: sai.
+) Ta có: \(3=\dfrac{2.1+1}{1-2}\) vô lí \(\Rightarrow \) Đồ thị hàm số không đi qua điểm\(A(1;3)\). Phương án C: sai.
Hướng dẫn giải:
- Tìm các tiệm cận đứng, ngang của đồ thị hàm số.
- Tìm các khoảng đồng biến nghịch biến của hàm số.
- Tìm các cực trị và xét tính đi qua một điểm của đồ thị hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Công thức nào sau đây không đúng khi tính diện tích toàn phần hình trụ?
Tập hợp tất cả các giá trị của m để hàm số $y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} + 2\left( {m - 1} \right)x - 2$ luôn tăng trên $R$
Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:
Phép đối xứng qua mặt phẳng \(\left( P \right)\) biến điểm \(M,N\) thành \(M',N'\) thì:
Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Cho hình trụ có bán kính đáy bằng \(a\). Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\dfrac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.
Cho hình lập phương \(ABCD.A'B'C'D'\) tâm \(O\). Phép dời hình nào không biến hình vuông \(ABCD\) thành hình vuông \(A'B'C'D'\)?
Số điểm cực trị của hàm số $y = {(x - 1)^{2017}}$ là
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Anh A mua nhà trị giá ba trăm triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng, bắt đầu từ tháng thứ nhất anh A trả 5.500.000đ và chịu lãi suất tiền chưa trả là 0,5%/tháng thì sau bao nhiêu tháng anh A trả hết số tiền trên.
Tìm số nghiệm nguyên của bất phương trình \({\left( {\dfrac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\dfrac{1}{3}} \right)^{x - 2}}\)