Câu hỏi Đáp án 3 năm trước 95

Tìm tất cả các giá trị của $m$ để hàm số $y =  - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$

A.

$m = 1$


B.

$m = 2$


C.

$m = 3$


Đáp án chính xác ✅

D.

$m = 4$


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c

TXĐ $D = \mathbb{R}$

$y' =  - {x^2} + \dfrac{2}{3}mx \Rightarrow y'' =  - 2x + \dfrac{2}{3}m$

Hàm số đã cho đạt cực đại tại $x = 2$

$ \Leftrightarrow \left\{ \begin{gathered}  y'(2) = 0 \hfill \\ y''\left( 2 \right) < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} - {2^2} + \dfrac{2}{3}m.2 = 0 \hfill \\ - 2.2 + \dfrac{2}{3}m. < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} - 4 + \dfrac{4}{3}m = 0 \hfill \\- 4 + \dfrac{2}{3}m < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} m = 3 \hfill \\m < 6 \hfill \\ \end{gathered}  \right. \Leftrightarrow m = 3$

Hướng dẫn giải:

- Bước 1: Tính $y',y''$.

- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:

+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered}  \right.$

+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$

- Bước 3: Kết luận. 

Giải thích thêm:

- Nhiều học sinh chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ mà quên điều kiện $y''\left( {{x_0}} \right) < 0$ dẫn đến kết luận sai.

- Nếu chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ thì sau khi tìm ra $m$ phải thay vào hàm số, kiểm tra xem $x = 2$ có là điểm cực đại của hàm số tìm được hay không.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số $f\left( x \right)$ xác định trên $\left[ {0;2} \right]$ và có GTNN trên đoạn đó bằng $5$. Chọn kết luận đúng:

Xem lời giải » 3 năm trước 99
Câu 2: Trắc nghiệm

Cho hàm số $y = {x^3} - 3m{x^2} + 6$, giá trị nhỏ nhất của hàm số trên $\left[ {0;3} \right]$ bằng $2$ khi:

Xem lời giải » 3 năm trước 97
Câu 3: Trắc nghiệm

Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$

Xem lời giải » 3 năm trước 95
Câu 4: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?

Đề kiểm tra 15 phút chương 1: Hàm số - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 93
Câu 5: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:

Đề kiểm tra 15 phút chương 1: Hàm số - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 92
Câu 6: Trắc nghiệm

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} <  - 1 < {x_2}$.

Xem lời giải » 3 năm trước 92
Câu 7: Trắc nghiệm

Hình dưới là đồ thị hàm số \(y = f'\left( x \right)\). Hỏi hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?

Đề kiểm tra 15 phút chương 1: Hàm số - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 91
Câu 8: Trắc nghiệm

Chọn phát biểu đúng:

Xem lời giải » 3 năm trước 91
Câu 9: Trắc nghiệm

Hãy lập phương trình đường thẳng $(d)$ đi qua các điểm cực đại và cực tiểu của đồ thị hàm số $y = {x^3} + 3m{x^2} - 3x$

Xem lời giải » 3 năm trước 90
Câu 10: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì

Xem lời giải » 3 năm trước 89
Câu 11: Trắc nghiệm

Tìm $m$ để hàm số $y = \dfrac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2$ nghịch biến trên khoảng $\left( { - 2;0} \right)$.

Xem lời giải » 3 năm trước 82

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »