Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
TXĐ $D = \mathbb{R}$
$y' = - {x^2} + \dfrac{2}{3}mx \Rightarrow y'' = - 2x + \dfrac{2}{3}m$
Hàm số đã cho đạt cực đại tại $x = 2$
$ \Leftrightarrow \left\{ \begin{gathered} y'(2) = 0 \hfill \\ y''\left( 2 \right) < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - {2^2} + \dfrac{2}{3}m.2 = 0 \hfill \\ - 2.2 + \dfrac{2}{3}m. < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - 4 + \dfrac{4}{3}m = 0 \hfill \\- 4 + \dfrac{2}{3}m < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} m = 3 \hfill \\m < 6 \hfill \\ \end{gathered} \right. \Leftrightarrow m = 3$
Hướng dẫn giải:
- Bước 1: Tính $y',y''$.
- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:
+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered} \right.$
+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$
- Bước 3: Kết luận.
Giải thích thêm:
- Nhiều học sinh chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ mà quên điều kiện $y''\left( {{x_0}} \right) < 0$ dẫn đến kết luận sai.
- Nếu chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ thì sau khi tìm ra $m$ phải thay vào hàm số, kiểm tra xem $x = 2$ có là điểm cực đại của hàm số tìm được hay không.
TXĐ $D = \mathbb{R}$
$y' = - {x^2} + \dfrac{2}{3}mx \Rightarrow y'' = - 2x + \dfrac{2}{3}m$
Hàm số đã cho đạt cực đại tại $x = 2$
$ \Leftrightarrow \left\{ \begin{gathered} y'(2) = 0 \hfill \\ y''\left( 2 \right) < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - {2^2} + \dfrac{2}{3}m.2 = 0 \hfill \\ - 2.2 + \dfrac{2}{3}m. < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} - 4 + \dfrac{4}{3}m = 0 \hfill \\- 4 + \dfrac{2}{3}m < 0 \hfill \\ \end{gathered} \right. $ $\Leftrightarrow \left\{ \begin{gathered} m = 3 \hfill \\m < 6 \hfill \\ \end{gathered} \right. \Leftrightarrow m = 3$
Hướng dẫn giải:
- Bước 1: Tính $y',y''$.
- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:
+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered} \right.$
+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$
- Bước 3: Kết luận.
Giải thích thêm:
- Nhiều học sinh chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ mà quên điều kiện $y''\left( {{x_0}} \right) < 0$ dẫn đến kết luận sai.
- Nếu chỉ xét điều kiện $y'\left( {{x_0}} \right) = 0$ thì sau khi tìm ra $m$ phải thay vào hàm số, kiểm tra xem $x = 2$ có là điểm cực đại của hàm số tìm được hay không.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $f\left( x \right)$ xác định trên $\left[ {0;2} \right]$ và có GTNN trên đoạn đó bằng $5$. Chọn kết luận đúng:
Cho hàm số $y = {x^3} - 3m{x^2} + 6$, giá trị nhỏ nhất của hàm số trên $\left[ {0;3} \right]$ bằng $2$ khi:
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} < - 1 < {x_2}$.
Hình dưới là đồ thị hàm số \(y = f'\left( x \right)\). Hỏi hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Hãy lập phương trình đường thẳng $(d)$ đi qua các điểm cực đại và cực tiểu của đồ thị hàm số $y = {x^3} + 3m{x^2} - 3x$
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Tìm $m$ để hàm số $y = \dfrac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2$ nghịch biến trên khoảng $\left( { - 2;0} \right)$.