Hình dưới là đồ thị hàm số \(y = f'\left( x \right)\). Hỏi hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
A.
\(\left( {0;1} \right)\) và \(\left( {2; + \infty } \right)\)
B.
\(\left( {1;2} \right)\)
C.
\(\left( {2; + \infty } \right)\)
D.
\(\left( {0;1} \right)\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Hàm số $y = f'\left( x \right)$ dương trong khoảng $\left( {2; + \infty } \right)$
$ \Rightarrow $ Hàm số $y = f\left( x \right)$ đồng biến trên $\left( {2; + \infty } \right)$
Hướng dẫn giải:
Khi đạo hàm của hàm số mang dấu dương trên một khoảng thì hàm số đồng biến trên khoảng đó.
Giải thích thêm:
Học sinh có thể nhầm lẫn đồ thị đề bài cho là đồ thị của hàm số $y = f\left( x \right)$ dẫn đến chọn đáp án A.
Hàm số $y = f'\left( x \right)$ dương trong khoảng $\left( {2; + \infty } \right)$
$ \Rightarrow $ Hàm số $y = f\left( x \right)$ đồng biến trên $\left( {2; + \infty } \right)$
Hướng dẫn giải:
Khi đạo hàm của hàm số mang dấu dương trên một khoảng thì hàm số đồng biến trên khoảng đó.
Giải thích thêm:
Học sinh có thể nhầm lẫn đồ thị đề bài cho là đồ thị của hàm số $y = f\left( x \right)$ dẫn đến chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $f\left( x \right)$ xác định trên $\left[ {0;2} \right]$ và có GTNN trên đoạn đó bằng $5$. Chọn kết luận đúng:
Cho hàm số $y = {x^3} - 3m{x^2} + 6$, giá trị nhỏ nhất của hàm số trên $\left[ {0;3} \right]$ bằng $2$ khi:
Tìm tất cả các giá trị của $m$ để hàm số $y = - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
Cho hàm số $y = f\left( x \right)$ có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:

Cho hàm số $y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6$ với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có hai điểm cực trị ${x_1},{\rm{ }}{x_2}$ thỏa mãn ${x_1} < - 1 < {x_2}$.
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Hãy lập phương trình đường thẳng $(d)$ đi qua các điểm cực đại và cực tiểu của đồ thị hàm số $y = {x^3} + 3m{x^2} - 3x$
Tìm $m$ để hàm số $y = \dfrac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2$ nghịch biến trên khoảng $\left( { - 2;0} \right)$.