Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
\({2^{{x^2} + x - 1}} = \dfrac{1}{2} \Leftrightarrow {2^{{x^2} + x - 1}} = {2^{ - 1}} \Leftrightarrow {x^2} + x - 1 = - 1 \Leftrightarrow {x^2} + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\)
Hướng dẫn giải:
Để giải phương trình mũ này ta đưa về cùng cơ số, sau đó cho số mũ bằng nhau rồi tìm x.
\({2^{{x^2} + x - 1}} = \dfrac{1}{2} \Leftrightarrow {2^{{x^2} + x - 1}} = {2^{ - 1}} \Leftrightarrow {x^2} + x - 1 = - 1 \Leftrightarrow {x^2} + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\)
Hướng dẫn giải:
Để giải phương trình mũ này ta đưa về cùng cơ số, sau đó cho số mũ bằng nhau rồi tìm x.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Đường cong trong hình vẽ bên là đồ thị của hàm số nào?

Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì: