Cho hàm số $y = {x^4} - 4{x^2} + 3$. Tìm tất cả các giá trị của tham số $m$ sao cho phương trình $\left| {{x^4} - 4{x^2} + 3} \right| = m$ có $4$ nghiệm phân biệt.
A.
$\dfrac{1}{3} < m < 1$
B.
$m = 0$ hoặc $1 < m < 3$
C.
$m=0$ hoặc $\dfrac{1}{3} < m < 1$
D.
$m = 0$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Số nghiệm của pt $\left| {{x^4} - 4{x^2} + 3} \right| = m$(*) số giao điểm của đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ và đường thẳng $y = m$.
Ta có đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ như hình vẽ:

Để pt $(*)$ có $4$ nghiệm phân biệt thì đường thẳng $y = m$ cắt đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ tại $4$ điểm phân biệt.
Quan sát đồ thị ta thấy đường thẳng cắt đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ tại $4$ điểm phân biệt $ \Leftrightarrow \left[ \begin{gathered} m = 0 \hfill \\ 1 < m < 3 \hfill \\ \end{gathered} \right.$
Hướng dẫn giải:
- Vẽ đồ thị hàm số $y = \left| {f\left( x \right)} \right|$ từ đồ thị hàm số $y = f\left( x \right)$:
Trước hết ta vẽ đồ thị hàm số $y = f\left( x \right)$.
Ta có: $y = \left| {f\left( x \right)} \right| = \left\{ \begin{gathered} f\left( x \right)\,\,\,\,\,\,\,khi\,\,\,f\left( x \right) \geqslant 0 \hfill \\ - f\left( x \right)\,\,\,\,khi\,\,\,f\left( x \right) \leqslant 0 \hfill \\ \end{gathered} \right.$
Do đó đồ thị hàm số $y = \left| {f\left( x \right)} \right|$ gồm hai phần:
+) Phần 1: Giữ lại phần đồ thị hàm số $y = f\left( x \right)$ ở phía trên trục hoành.
+) Phần 2: Lấy đối xứng phần đồ thị hàm số $y = f\left( x \right)$ ở phía dưới trục hoành lên phía trên qua trục hoành sau đó xóa đi phần đồ thị phía dưới trục hoành
- Biện luận số nghiệm của phương trình dựa vào số giao điểm của đường thẳng và đường cong vừa vẽ được.
Số nghiệm của pt $\left| {{x^4} - 4{x^2} + 3} \right| = m$(*) số giao điểm của đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ và đường thẳng $y = m$.
Ta có đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ như hình vẽ:

Để pt $(*)$ có $4$ nghiệm phân biệt thì đường thẳng $y = m$ cắt đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ tại $4$ điểm phân biệt.
Quan sát đồ thị ta thấy đường thẳng cắt đồ thị hàm số $y = \left| {{x^4} - 4{x^2} + 3} \right|$ tại $4$ điểm phân biệt $ \Leftrightarrow \left[ \begin{gathered} m = 0 \hfill \\ 1 < m < 3 \hfill \\ \end{gathered} \right.$
Hướng dẫn giải:
- Vẽ đồ thị hàm số $y = \left| {f\left( x \right)} \right|$ từ đồ thị hàm số $y = f\left( x \right)$:
Trước hết ta vẽ đồ thị hàm số $y = f\left( x \right)$.
Ta có: $y = \left| {f\left( x \right)} \right| = \left\{ \begin{gathered} f\left( x \right)\,\,\,\,\,\,\,khi\,\,\,f\left( x \right) \geqslant 0 \hfill \\ - f\left( x \right)\,\,\,\,khi\,\,\,f\left( x \right) \leqslant 0 \hfill \\ \end{gathered} \right.$
Do đó đồ thị hàm số $y = \left| {f\left( x \right)} \right|$ gồm hai phần:
+) Phần 1: Giữ lại phần đồ thị hàm số $y = f\left( x \right)$ ở phía trên trục hoành.
+) Phần 2: Lấy đối xứng phần đồ thị hàm số $y = f\left( x \right)$ ở phía dưới trục hoành lên phía trên qua trục hoành sau đó xóa đi phần đồ thị phía dưới trục hoành
- Biện luận số nghiệm của phương trình dựa vào số giao điểm của đường thẳng và đường cong vừa vẽ được.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng: