Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Từ hình vẽ ta thấy \(1 < {2^\alpha } < 2 \Rightarrow 0 < \alpha < 1\)
.
Hướng dẫn giải:
Sử dụng các dáng đồ thị hàm số \(y = {x^\alpha }\) ứng với các điều kiện khác nhau của \(\alpha \):
Giải thích thêm:
Nhiều HS sẽ sử dụng tính đồng biến nghịch biến để xét, vì thấy hàm số đồng biến nên vội vàng kết luận \(\alpha > 1\) vì nhầm với tính đơn điệu của hàm số mũ là sai.
Có thể nhận xét trực tiếp:
Đồ thị là đường cong nên loại A và B.
Mặt khác thấy $x=4$ thì $y = 2$ nên chọn D
Từ hình vẽ ta thấy \(1 < {2^\alpha } < 2 \Rightarrow 0 < \alpha < 1\)
.
Hướng dẫn giải:
Sử dụng các dáng đồ thị hàm số \(y = {x^\alpha }\) ứng với các điều kiện khác nhau của \(\alpha \):

Giải thích thêm:
Nhiều HS sẽ sử dụng tính đồng biến nghịch biến để xét, vì thấy hàm số đồng biến nên vội vàng kết luận \(\alpha > 1\) vì nhầm với tính đơn điệu của hàm số mũ là sai.
Có thể nhận xét trực tiếp:
Đồ thị là đường cong nên loại A và B.
Mặt khác thấy $x=4$ thì $y = 2$ nên chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Cho hàm số $y = {x^4} - 4{x^2} + 3$. Tìm tất cả các giá trị của tham số $m$ sao cho phương trình $\left| {{x^4} - 4{x^2} + 3} \right| = m$ có $4$ nghiệm phân biệt.
Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
