Câu hỏi Đáp án 3 năm trước 121

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).

A. \(6\)

B. \(5\)

C. \(8\)

Đáp án chính xác ✅

D. \(7\)

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\). Đồ thị hàm số có hai đường tiệm cận là \(x = 2\) và \(y = 2\).

Ta có \(y' = \dfrac{{ - 2}}{{{{\left( {x - 2} \right)}^2}}}\). Gọi \(M\left( {m;\,\dfrac{{2m - 2}}{{m - 2}}} \right)\) thuộc đồ thị hàm số.

Phương trình tiếp tuyến \(d\) của \(\left( C \right)\) tại \(M\): \(y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\).

Cho \(x = 2 \Rightarrow y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {2 - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\)\( \Leftrightarrow y = \dfrac{2}{{m - 2}} + \dfrac{{2m - 2}}{{m - 2}} = \dfrac{{2m}}{{m - 2}}\).

\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(x = 2\) là \(A\left( {2;\,\dfrac{{2m}}{{m - 2}}} \right)\).

Cho \(y = 2 \Rightarrow \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}} = 2\).

\(\begin{array}{l} \Leftrightarrow  - 2\left( {x - m} \right) + \left( {2m - 2} \right)\left( {m - 2} \right) = 2{\left( {m - 2} \right)^2}\\ \Leftrightarrow  - 2x + 2m + 2{m^2} - 6m + 4 = 2{m^2} - 8m + 8\\ \Leftrightarrow 2x = 4m - 4 \Leftrightarrow x = 2m - 2\end{array}\)

\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(y = 2\) là \(B\left( {2m - 2;\,2} \right)\).

Ta có: \(AB = 2\sqrt 5  \Leftrightarrow {\left( {2m - 4} \right)^2} + {\left( {2 - \dfrac{{2m}}{{m - 2}}} \right)^2} = 20\)

\(\begin{array}{l} \Leftrightarrow 4{\left( {m - 2} \right)^2} + \dfrac{{16}}{{{{\left( {m - 2} \right)}^2}}} = 20\\ \Leftrightarrow {\left( {m - 2} \right)^4} - 5{\left( {m - 2} \right)^2} + 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\left( {m - 2} \right)^2} = 1\\{\left( {m - 2} \right)^2} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 3\\m = 1\\m = 4\\m = 0\end{array} \right.\end{array}\)

Vậy \(S = 3 + 1 + 4 + 0 = 8\).

Hướng dẫn giải:

- Tìm 2 đường tiệm cận của đồ thị hàm số.

- Gọi \(M\left( {m;\,\dfrac{{2m - 2}}{{m - 2}}} \right)\) thuộc đồ thị hàm số. Viết phương trình tiếp tuyến của đồ thị hàm số tại \(M\).

- Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

- Tìm giao điểm \(A,\,\,B\) của tiếp tuyến với 2 đường tiệm cận.

- Tính độ dài đoạn thẳng \(AB:\) \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \).

- Giải phương trình tìm \(m\), từ đó tính \(S\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Đề kiểm tra học kì 1 - Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 128
Câu 2: Trắc nghiệm

Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\) 

Xem lời giải » 3 năm trước 121
Câu 3: Trắc nghiệm

Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$

Xem lời giải » 3 năm trước 118
Câu 4: Trắc nghiệm

Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).

Xem lời giải » 3 năm trước 117
Câu 5: Trắc nghiệm

Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\)  là:

Xem lời giải » 3 năm trước 115
Câu 6: Trắc nghiệm

Đồ thị hàm số nào sau đây có 3 đường tiệm cận?

Xem lời giải » 3 năm trước 115
Câu 7: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem lời giải » 3 năm trước 114
Câu 8: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Đề kiểm tra học kì 1 - Đề số 5 - ảnh 1

Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải » 3 năm trước 114
Câu 9: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Đề kiểm tra học kì 1 - Đề số 5 - ảnh 1

Bảng biến thiên trên là bảng biến thiên của hàm số nào?

Xem lời giải » 3 năm trước 113
Câu 10: Trắc nghiệm

Cho hàm số $y = {x^4} - 4{x^2} + 3$. Tìm tất cả các giá trị của tham số $m$ sao cho phương trình $\left| {{x^4} - 4{x^2} + 3} \right| = m$ có $4$ nghiệm phân biệt.

Xem lời giải » 3 năm trước 110
Câu 11: Trắc nghiệm

Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:

Xem lời giải » 3 năm trước 110
Câu 12: Trắc nghiệm

Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:

Xem lời giải » 3 năm trước 110
Câu 13: Trắc nghiệm

Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:

Xem lời giải » 3 năm trước 107
Câu 14: Trắc nghiệm

Cho $x, y$ là các số thực thỏa mãn \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = 2x - y\).

Xem lời giải » 3 năm trước 106
Câu 15: Trắc nghiệm

Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 106

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »