Một người lần đầu gửi vào ngân hàng $100$ triệu đồng với kì hạn $3$ tháng, lãi suất $2\% $ một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm $100$ triệu đồng với kì hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm gửi thêm tiền gần nhất với kết quả nào sau đây?
A.
$210$ triệu
B.
$220$ triệu
C.
$212$ triệu
D.
$216$ triệu
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Số tiền người đó có sau 6 tháng = 2 quý: ${T_1} = 100{\left( {1 + 2\% } \right)^2} = 104,04$ triệu.
Số tiền người đó có ngay sau khi gửi thêm $100$ triệu là: $104,04 + 100 = 204,04$ triệu.
Số tiền người đó có sau 1 năm = 4 quý nữa là: ${T_2} = 204,04{\left( {1 + 2\% } \right)^4} = 220$ triệu.
Hướng dẫn giải:
- Tính số tiền có được sau 6 tháng đầu.
- Tính số tiền có được sau 1 năm gửi tiếp.
Sử dụng công thức lãi kép không kì hạn $T = A{\left( {1 + r} \right)^N}$
Số tiền người đó có sau 6 tháng = 2 quý: ${T_1} = 100{\left( {1 + 2\% } \right)^2} = 104,04$ triệu.
Số tiền người đó có ngay sau khi gửi thêm $100$ triệu là: $104,04 + 100 = 204,04$ triệu.
Số tiền người đó có sau 1 năm = 4 quý nữa là: ${T_2} = 204,04{\left( {1 + 2\% } \right)^4} = 220$ triệu.
Hướng dẫn giải:
- Tính số tiền có được sau 6 tháng đầu.
- Tính số tiền có được sau 1 năm gửi tiếp.
Sử dụng công thức lãi kép không kì hạn $T = A{\left( {1 + r} \right)^N}$
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Cho hàm số $y = {x^4} - 4{x^2} + 3$. Tìm tất cả các giá trị của tham số $m$ sao cho phương trình $\left| {{x^4} - 4{x^2} + 3} \right| = m$ có $4$ nghiệm phân biệt.
Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào?

