Một người lần đầu gửi vào ngân hàng $100$ triệu đồng với kì hạn $3$ tháng, lãi suất $2\% $ một quý theo hình thức lãi kép. Sau đúng 6 tháng, người đó gửi thêm $100$ triệu đồng với kì hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được sau 1 năm gửi thêm tiền gần nhất với kết quả nào sau đây?
A.
$210$ triệu
B.
$220$ triệu
C.
$212$ triệu
D.
$216$ triệu
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Số tiền người đó có sau 6 tháng = 2 quý: ${T_1} = 100{\left( {1 + 2\% } \right)^2} = 104,04$ triệu.
Số tiền người đó có ngay sau khi gửi thêm $100$ triệu là: $104,04 + 100 = 204,04$ triệu.
Số tiền người đó có sau 1 năm = 4 quý nữa là: ${T_2} = 204,04{\left( {1 + 2\% } \right)^4} = 220$ triệu.
Hướng dẫn giải:
- Tính số tiền có được sau 6 tháng đầu.
- Tính số tiền có được sau 1 năm gửi tiếp.
Sử dụng công thức lãi kép không kì hạn $T = A{\left( {1 + r} \right)^N}$
Số tiền người đó có sau 6 tháng = 2 quý: ${T_1} = 100{\left( {1 + 2\% } \right)^2} = 104,04$ triệu.
Số tiền người đó có ngay sau khi gửi thêm $100$ triệu là: $104,04 + 100 = 204,04$ triệu.
Số tiền người đó có sau 1 năm = 4 quý nữa là: ${T_2} = 204,04{\left( {1 + 2\% } \right)^4} = 220$ triệu.
Hướng dẫn giải:
- Tính số tiền có được sau 6 tháng đầu.
- Tính số tiền có được sau 1 năm gửi tiếp.
Sử dụng công thức lãi kép không kì hạn $T = A{\left( {1 + r} \right)^N}$
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Đường cong trong hình vẽ bên là đồ thị của hàm số nào?

