Giải bất phương trình \({\log _{0,7}}\left( {{{\log }_6}\dfrac{{{x^2} + x}}{{x + 4}}} \right) < 0\)
A.
\(\left( { - 4; - 3} \right) \cup \left( {8; + \infty } \right)\)
B.
\(\left( { - 4; - 3} \right)\)
C.
\(\left( { - 4; + \infty } \right)\)
D.
\(\left( {8; + \infty } \right)\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
${\log _{0,7}}({\log _6}\dfrac{{{x^2} + x}}{{x + 4}}) < 0$ .
Đkxđ: $\left\{ \begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0\\\dfrac{{{x^2} + x}}{{x + 4}} > 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4 < x < - 2\\x > 2\end{array} \right.(*)$
\(\begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0,{7^0} = 1 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} > 6 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} - 6 > 0\\ \Leftrightarrow \dfrac{{{x^2} - 5{\rm{x}} - 24}}{{x + 4}} > 0 \Leftrightarrow \dfrac{{(x - 8)(x + 3)}}{{x + 4}} > 0\end{array}\)
Xét dấu \(f\left( x \right) = \dfrac{{(x - 8)(x + 3)}}{{x + 4}}\):

Vậy \( - 4 < x < - 3\) hoặc \(x > 8\).
Kết hợp với điều kiện ta được \( - 4 < x < - 3\) hoặc \(x > 8\).
Hướng dẫn giải:
Giải bất phương trình logarit cơ bản với chú ý về cơ số $a>1$ và $0<a<1$.
${\log _{0,7}}({\log _6}\dfrac{{{x^2} + x}}{{x + 4}}) < 0$ .
Đkxđ: $\left\{ \begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0\\\dfrac{{{x^2} + x}}{{x + 4}} > 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4 < x < - 2\\x > 2\end{array} \right.(*)$
\(\begin{array}{l}{\log _6}\dfrac{{{x^2} + x}}{{x + 4}} > 0,{7^0} = 1 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} > 6 \Leftrightarrow \dfrac{{{x^2} + x}}{{x + 4}} - 6 > 0\\ \Leftrightarrow \dfrac{{{x^2} - 5{\rm{x}} - 24}}{{x + 4}} > 0 \Leftrightarrow \dfrac{{(x - 8)(x + 3)}}{{x + 4}} > 0\end{array}\)
Xét dấu \(f\left( x \right) = \dfrac{{(x - 8)(x + 3)}}{{x + 4}}\):
Vậy \( - 4 < x < - 3\) hoặc \(x > 8\).
Kết hợp với điều kiện ta được \( - 4 < x < - 3\) hoặc \(x > 8\).
Hướng dẫn giải:
Giải bất phương trình logarit cơ bản với chú ý về cơ số $a>1$ và $0<a<1$.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Đường cong trong hình vẽ bên là đồ thị của hàm số nào?

Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng:
