Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Ta sử dụng theo cách trắc nghiệm để giải bài toán
Hàm số có nét cuối đi lên nên ta có: $a > 0$. Nên ta loại đáp án A.
Đồ thị hàm số đi qua điểm $A(1;0) $ ta thay tọa độ điểm A vào 3 đáp án B, C, D thì đáp án D loại.
Đồ thị hàm số đi qua điểm $B(0;2)$ nên ta thay tọa độ điểm B vào đáp án B và C thì ta loại được đáp án C.
Hướng dẫn giải:
Dựa vào dạng của đồ thị hàm số, các điểm đi qua và các điểm cực trị của đồ thị hàm số để kết luận hàm số đó.
Ta sử dụng theo cách trắc nghiệm để giải bài toán
Hàm số có nét cuối đi lên nên ta có: $a > 0$. Nên ta loại đáp án A.
Đồ thị hàm số đi qua điểm $A(1;0) $ ta thay tọa độ điểm A vào 3 đáp án B, C, D thì đáp án D loại.
Đồ thị hàm số đi qua điểm $B(0;2)$ nên ta thay tọa độ điểm B vào đáp án B và C thì ta loại được đáp án C.
Hướng dẫn giải:
Dựa vào dạng của đồ thị hàm số, các điểm đi qua và các điểm cực trị của đồ thị hàm số để kết luận hàm số đó.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Cho hàm số $y = a{x^4} + b{x^2} + c\left( {a > 0} \right)$ có ba cực trị. Nếu ${y_{CD}} < 0$ thì:
Đề thi THPT QG - 2021 - mã 101
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho bảng biến thiên hình bên, hàm số đồng biến trên:
Cho hàm số $y = f\left( x \right) = a{x^4} + {b^2}{x^2} + 1\left( {a \ne 0} \right)$ . Trong các khẳng định dưới đây, khẳng định nào là đúng?
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực trị. Khi đó, đồ thị hàm số nằm hoàn toàn phía dưới trục hoành thì:
