Chọn kết luận đúng:
A.
Hàm số bậc ba có 2 cực trị thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt.
B.
Đồ thị hàm số bậc ba luôn cắt trục hoành tại điểm uốn của nó.
C.
Đồ thị hàm số bậc ba cắt trục hoành tại 3 điểm phân biệt thì hàm số có hai điểm cực trị.
D.
Đồ thị hàm số bậc ba cắt trục hoành tại 1 điểm duy nhất thì nó không có cực trị.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Đáp án A: Hàm số bậc ba có $2$ cực trị thì đồ thị hàm số cắt trục hoành tại $3$ điểm phân biệt nếu ${y_{CD}}.{y_{CT}} < 0$ hoặc chỉ cắt $Ox$ tại 1 điểm nếu ${y_{CD}}.{y_{CT}} > 0$ nên A sai.
Đáp án B: Đồ thị hàm số bậc ba luôn cắt trục hoành tại ít nhất $1$ điểm nhưng chưa chắc đó là điểm uốn nên B sai.
Đáp án C: Đồ thị hàm số bậc ba cắt trục hoành tại $3$ điểm phân biệt thì hàm số có hai điểm cực trị là đúng.
Đáp án D: Đồ thị hàm số bậc ba cắt trục hoành tại $1$ điểm duy nhất thì nó không có cực trị hoặc có cực trị nhưng hai giá trị cực trị cùng dấu nên D sai.
Giải thích thêm:
HS cần nắm rõ các dạng đồ thị hàm số bậc ba để nhận xét, tránh chọn nhầm các đáp án A hoặc D là sai.
Đáp án A: Hàm số bậc ba có $2$ cực trị thì đồ thị hàm số cắt trục hoành tại $3$ điểm phân biệt nếu ${y_{CD}}.{y_{CT}} < 0$ hoặc chỉ cắt $Ox$ tại 1 điểm nếu ${y_{CD}}.{y_{CT}} > 0$ nên A sai.
Đáp án B: Đồ thị hàm số bậc ba luôn cắt trục hoành tại ít nhất $1$ điểm nhưng chưa chắc đó là điểm uốn nên B sai.
Đáp án C: Đồ thị hàm số bậc ba cắt trục hoành tại $3$ điểm phân biệt thì hàm số có hai điểm cực trị là đúng.
Đáp án D: Đồ thị hàm số bậc ba cắt trục hoành tại $1$ điểm duy nhất thì nó không có cực trị hoặc có cực trị nhưng hai giá trị cực trị cùng dấu nên D sai.
Giải thích thêm:
HS cần nắm rõ các dạng đồ thị hàm số bậc ba để nhận xét, tránh chọn nhầm các đáp án A hoặc D là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Cho hàm số $y = a{x^4} + b{x^2} + c\left( {a > 0} \right)$ có ba cực trị. Nếu ${y_{CD}} < 0$ thì:
Đồ thị trong hình dưới là đồ thị của một trong bốn hàm số cho trong các phương án sau đây, đó là hàm số nào?

Đề thi THPT QG - 2021 - mã 101
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho bảng biến thiên hình bên, hàm số đồng biến trên:
Cho hàm số $y = f\left( x \right) = a{x^4} + {b^2}{x^2} + 1\left( {a \ne 0} \right)$ . Trong các khẳng định dưới đây, khẳng định nào là đúng?
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực trị. Khi đó, đồ thị hàm số nằm hoàn toàn phía dưới trục hoành thì: