Chọn kết luận đúng:
A.
Hàm số bậc ba có 2 cực trị thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt.
B.
Đồ thị hàm số bậc ba luôn cắt trục hoành tại điểm uốn của nó.
C.
Đồ thị hàm số bậc ba cắt trục hoành tại 3 điểm phân biệt thì hàm số có hai điểm cực trị.
D.
Đồ thị hàm số bậc ba cắt trục hoành tại 1 điểm duy nhất thì nó không có cực trị.
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Đáp án A: Hàm số bậc ba có $2$ cực trị thì đồ thị hàm số cắt trục hoành tại $3$ điểm phân biệt nếu ${y_{CD}}.{y_{CT}} < 0$ hoặc chỉ cắt $Ox$ tại 1 điểm nếu ${y_{CD}}.{y_{CT}} > 0$ nên A sai.
Đáp án B: Đồ thị hàm số bậc ba luôn cắt trục hoành tại ít nhất $1$ điểm nhưng chưa chắc đó là điểm uốn nên B sai.
Đáp án C: Đồ thị hàm số bậc ba cắt trục hoành tại $3$ điểm phân biệt thì hàm số có hai điểm cực trị là đúng.
Đáp án D: Đồ thị hàm số bậc ba cắt trục hoành tại $1$ điểm duy nhất thì nó không có cực trị hoặc có cực trị nhưng hai giá trị cực trị cùng dấu nên D sai.
Giải thích thêm:
HS cần nắm rõ các dạng đồ thị hàm số bậc ba để nhận xét, tránh chọn nhầm các đáp án A hoặc D là sai.
Đáp án A: Hàm số bậc ba có $2$ cực trị thì đồ thị hàm số cắt trục hoành tại $3$ điểm phân biệt nếu ${y_{CD}}.{y_{CT}} < 0$ hoặc chỉ cắt $Ox$ tại 1 điểm nếu ${y_{CD}}.{y_{CT}} > 0$ nên A sai.
Đáp án B: Đồ thị hàm số bậc ba luôn cắt trục hoành tại ít nhất $1$ điểm nhưng chưa chắc đó là điểm uốn nên B sai.
Đáp án C: Đồ thị hàm số bậc ba cắt trục hoành tại $3$ điểm phân biệt thì hàm số có hai điểm cực trị là đúng.
Đáp án D: Đồ thị hàm số bậc ba cắt trục hoành tại $1$ điểm duy nhất thì nó không có cực trị hoặc có cực trị nhưng hai giá trị cực trị cùng dấu nên D sai.
Giải thích thêm:
HS cần nắm rõ các dạng đồ thị hàm số bậc ba để nhận xét, tránh chọn nhầm các đáp án A hoặc D là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Đồ thị trong hình dưới là đồ thị của một trong bốn hàm số cho trong các phương án sau đây, đó là hàm số nào?

Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Đề thi THPT QG - 2021 - mã 101
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hàm số $y = a{x^4} + b{x^2} + c\left( {a > 0} \right)$ có ba cực trị. Nếu ${y_{CD}} < 0$ thì:
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực trị. Khi đó, đồ thị hàm số nằm hoàn toàn phía dưới trục hoành thì:
Cho bảng biến thiên hình bên, hàm số đồng biến trên:
Cho hàm số $y = f\left( x \right) = a{x^4} + {b^2}{x^2} + 1\left( {a \ne 0} \right)$ . Trong các khẳng định dưới đây, khẳng định nào là đúng?