Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Đồ thị là dạng của hàm số bậc 4 trùng phương, nhánh cuối của đồ thị đi xuống \( \Rightarrow \) hệ số của \({x^4}\) mang dấu âm.
Hướng dẫn giải:
Dựa vào đồ thị nhận dạng hàm số.
Đồ thị là dạng của hàm số bậc 4 trùng phương, nhánh cuối của đồ thị đi xuống \( \Rightarrow \) hệ số của \({x^4}\) mang dấu âm.
Hướng dẫn giải:
Dựa vào đồ thị nhận dạng hàm số.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Cho hàm số $y = a{x^4} + b{x^2} + c\left( {a > 0} \right)$ có ba cực trị. Nếu ${y_{CD}} < 0$ thì:
Đồ thị trong hình dưới là đồ thị của một trong bốn hàm số cho trong các phương án sau đây, đó là hàm số nào?

Cho bảng biến thiên hình bên, hàm số đồng biến trên:
Cho hàm số $y = f\left( x \right) = a{x^4} + {b^2}{x^2} + 1\left( {a \ne 0} \right)$ . Trong các khẳng định dưới đây, khẳng định nào là đúng?
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực trị. Khi đó, đồ thị hàm số nằm hoàn toàn phía dưới trục hoành thì: