Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Quan sát bảng biến thiên ta thấy \(y' > 0,\forall x \in \left( {{x_1};{x_2}} \right)\) nên hàm số nghịch biến trên khoảng \(\left( {{x_1};{x_2}} \right)\)
Hướng dẫn giải:
Khoảng làm cho đạo hàm mang dấu dương là khoảng hàm số đồng biến.
Quan sát bảng biến thiên ta thấy \(y' > 0,\forall x \in \left( {{x_1};{x_2}} \right)\) nên hàm số nghịch biến trên khoảng \(\left( {{x_1};{x_2}} \right)\)
Hướng dẫn giải:
Khoảng làm cho đạo hàm mang dấu dương là khoảng hàm số đồng biến.
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ, chọn kết luận đúng:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Nếu điểm cực đại của đồ thị hàm số bậc ba nằm ở trục hoành thì:
Cho hàm số $y = a{x^4} + b{x^2} + c\left( {a > 0} \right)$ có ba cực trị. Nếu ${y_{CD}} < 0$ thì:
Đồ thị trong hình dưới là đồ thị của một trong bốn hàm số cho trong các phương án sau đây, đó là hàm số nào?

Đề thi THPT QG - 2021 - mã 101
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hàm số $y = f\left( x \right) = a{x^4} + {b^2}{x^2} + 1\left( {a \ne 0} \right)$ . Trong các khẳng định dưới đây, khẳng định nào là đúng?
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có 1 cực trị. Khi đó, đồ thị hàm số nằm hoàn toàn phía dưới trục hoành thì: