Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(\left( P \right)\) là \({{x}^{3}}-3{{x}^{2}}+2x-1={{x}^{2}}-3x+1\)
\(\Leftrightarrow {{x}^{3}}-4{{x}^{2}}+5x-2=0\Leftrightarrow \left( x-2 \right){{\left( x-1 \right)}^{2}}=0\Leftrightarrow \left[ \begin{align} & x=1\,\,\Rightarrow \,\,y\left( 1 \right)=-\,1 \\& x=2\,\,\Rightarrow \,\,y\left( 2 \right)=-\,1 \\ \end{align} \right..\)
Khi đó \(A\left( 1;-\,1 \right),\,\,B\left( 2;-\,1 \right)\) \(\xrightarrow{{}}\,\,\overrightarrow{AB}=\left( 1;0 \right)\Rightarrow AB=1.\)
Hướng dẫn giải:
+) Viết phương trình hoành độ giao điểm của hai đồ thị hàm số để tìm tọa độ giao điểm và tính khoảng cách.
+) Cho hai điểm \(A\left( {{x}_{1}};\ {{y}_{1}} \right);\ B\left( {{x}_{2}};\ {{y}_{2}} \right)\Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}.\)
Phương trình hoành độ giao điểm của \(\left( C \right)\) và \(\left( P \right)\) là \({{x}^{3}}-3{{x}^{2}}+2x-1={{x}^{2}}-3x+1\)
\(\Leftrightarrow {{x}^{3}}-4{{x}^{2}}+5x-2=0\Leftrightarrow \left( x-2 \right){{\left( x-1 \right)}^{2}}=0\Leftrightarrow \left[ \begin{align} & x=1\,\,\Rightarrow \,\,y\left( 1 \right)=-\,1 \\& x=2\,\,\Rightarrow \,\,y\left( 2 \right)=-\,1 \\ \end{align} \right..\)
Khi đó \(A\left( 1;-\,1 \right),\,\,B\left( 2;-\,1 \right)\) \(\xrightarrow{{}}\,\,\overrightarrow{AB}=\left( 1;0 \right)\Rightarrow AB=1.\)
Hướng dẫn giải:
+) Viết phương trình hoành độ giao điểm của hai đồ thị hàm số để tìm tọa độ giao điểm và tính khoảng cách.
+) Cho hai điểm \(A\left( {{x}_{1}};\ {{y}_{1}} \right);\ B\left( {{x}_{2}};\ {{y}_{2}} \right)\Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên:

Khẳng định nào sau đây là đúng?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Với các giá trị nào của tham số m thì phương trình \(f\left( {\left| x \right|} \right) = 3m + 1\) có bốn nghiệm phân biệt.

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho hàm số \(y = \dfrac{5}{3}{x^3} - {x^2} + 4\) có đồ thị \((C)\). Tiếp tuyến của \((C)\) tại điểm có hoành độ \({x_0} = 3\) có hệ số góc là:
Hàm số \(y = \dfrac{{\sqrt {{x^2} - 2x + 1} }}{{x - 1}}\) xác định khi
Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{5x + 1}}{{3x - 2}}\) là
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Đề thi THPT QG - 2021 - mã 103
Đồ thị của hàm số \(y = - {x^3} + 2{x^2} - 1\) cắt trục tung tại điểm có tung độ bằng:
Cho hàm số $y = \dfrac{{3x + 1}}{{x + 2}}\left( C \right).$ Các đường tiệm cận của (C) cùng với 2 trục tọa độ tạo thành hình chữ nhật có diện tích bằng: