Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Vì cả hai hình chóp tam giác đều có cách cạnh đáy bằng nhau và bằng \(a\) nên chúng chỉ cần có các cạnh bên bằng nhau là đủ.
Hướng dẫn giải:
- Sử dụng tính chất: Hình chóp tam giác đều có các cạnh bên bằng nhau.
- Sử dụng dấu hiệu: Hai tứ diện bằng nhau nếu chúng có các cạnh tương ứng bằng nhau.
Giải thích thêm:
Một số em sẽ chọn đáp án D vì nhầm lẫn hai khái niệm hình chóp tam giác đều và hình tứ diện đều là sai.
Vì cả hai hình chóp tam giác đều có cách cạnh đáy bằng nhau và bằng \(a\) nên chúng chỉ cần có các cạnh bên bằng nhau là đủ.
Hướng dẫn giải:
- Sử dụng tính chất: Hình chóp tam giác đều có các cạnh bên bằng nhau.
- Sử dụng dấu hiệu: Hai tứ diện bằng nhau nếu chúng có các cạnh tương ứng bằng nhau.
Giải thích thêm:
Một số em sẽ chọn đáp án D vì nhầm lẫn hai khái niệm hình chóp tam giác đều và hình tứ diện đều là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét hàm số \(y = {x^\alpha }\) trên tập \(\left( {0; + \infty } \right)\) có đồ thị dưới đây, chọn kết luận đúng:

Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
Tập hợp nghiệm của phương trình \({\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\) là:
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Tìm TXĐ của hàm số \(y = {\left( {{x^3} - 27} \right)^{\dfrac{\pi }{2}}}\)
Tìm giá trị lớn nhất của hàm số $y = {x^3} - 5{{\text{x}}^2} + 3{\text{x}} - 1$ trên đoạn $\left[ {2;4} \right]$
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng?
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Cho hàm số \(y = {3^x} + \ln 3\). Chọn mệnh đề đúng:
Cho hàm số $y = {x^4} - 4{x^2} + 3$. Tìm tất cả các giá trị của tham số $m$ sao cho phương trình $\left| {{x^4} - 4{x^2} + 3} \right| = m$ có $4$ nghiệm phân biệt.
Khi quay hình chữ nhật \(MNPQ\) quanh đường thẳng \(AB\) với \(A,B\) lần lượt là trung điểm của \(MN,PQ\) ta được một hình trụ có đường kính đáy:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Nếu $\log_a b{\rm{ }} = {\rm{ }}p$ thì $\log_a{a^2}{b^4}$ bằng: