Câu hỏi Đáp án 3 năm trước 83

Cho ba điểm \(A,{\rm{ }}B,{\rm{ }}C\) lần lượt biểu diễn ba số phức \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\) với \({z_3} \ne {z_1}\) và \({z_3} \ne {z_2}.\) Biết \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\) và \({z_1} + {z_2} = 0.\) Mệnh đề nào sau đây là đúng?

A.

Tam giác \(ABC\) vuông tại \(C\).


Đáp án chính xác ✅

B.

Tam giác \(ABC\) đều


C.

Tam giác \(ABC\) vuông cân tại \(C\).


D.

Tam giác \(ABC\) cân tại \(C\).


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a
Lời giải - Đề kiểm tra 1 tiết chương 4: Số phức - Đề số 2 - ảnh 1

Giả sử \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = R.\)

Khi đó \(A,{\rm{ }}B,{\rm{ }}C\) nằm trên đường tròn \(\left( {O;R} \right)\).

Do \({z_1} + {z_2} = 0\) nên hai điểm \(A,{\rm{ }}B\) đối xứng nhau qua \(O.\) Như vậy điểm \(C\) nằm trên đường tròn đường kính \(AB\) (bỏ đi hai điểm \(A\) và \(B\)) hay tam giác \(ABC\) vuông tại \(C\).

Hướng dẫn giải:

Biểu diễn hình học các điểm biểu diễn \({z_1},{z_2},{z_3}\) và nhận xét tam giác \(ABC\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là

Xem lời giải » 3 năm trước 119
Câu 2: Trắc nghiệm

Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)

Xem lời giải » 3 năm trước 114
Câu 3: Trắc nghiệm

Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).

Xem lời giải » 3 năm trước 106
Câu 4: Trắc nghiệm

Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?

Đề kiểm tra 1 tiết chương 4: Số phức - Đề số 2 - ảnh 1

Xem lời giải » 3 năm trước 103
Câu 5: Trắc nghiệm

Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:

Xem lời giải » 3 năm trước 103
Câu 6: Trắc nghiệm

Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$

Xem lời giải » 3 năm trước 103
Câu 7: Trắc nghiệm

Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:

Xem lời giải » 3 năm trước 100
Câu 8: Trắc nghiệm

Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$

Xem lời giải » 3 năm trước 100
Câu 9: Trắc nghiệm

Tính môđun của số phức $z$ biết $\overline z  = \left( {4 - 3i} \right)\left( {1 + i} \right)$.

Xem lời giải » 3 năm trước 100
Câu 10: Trắc nghiệm

Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.

Xem lời giải » 3 năm trước 99
Câu 11: Trắc nghiệm

Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)

Xem lời giải » 3 năm trước 98
Câu 12: Trắc nghiệm

Trong $C$, cho phương trình $a{z^2} + bz + c = 0(a \ne 0)(*),a,b,c\in R$. Gọi $\Delta  = {b^2} - 4ac$, ta xét các mệnh đề sau:

1) Nếu \(\Delta \)  là số thực âm thì phương trình (*) vô nghiệm

2) Nếu \(\Delta  \ne 0\) thì phương trình (*) có $2$ nghiệm phân biệt

3) Nếu \(\Delta  = 0\) thì phương trình (*) có nghiệm kép

Trong các mệnh đề trên

Xem lời giải » 3 năm trước 95
Câu 13: Trắc nghiệm

Cho số phức $z = 1 + \sqrt {3}i $. Khi đó

Xem lời giải » 3 năm trước 94
Câu 14: Trắc nghiệm

Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:

Xem lời giải » 3 năm trước 94
Câu 15: Trắc nghiệm

Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 93

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »