Cho ba điểm \(A,{\rm{ }}B,{\rm{ }}C\) lần lượt biểu diễn ba số phức \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\) với \({z_3} \ne {z_1}\) và \({z_3} \ne {z_2}.\) Biết \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\) và \({z_1} + {z_2} = 0.\) Mệnh đề nào sau đây là đúng?
A.
Tam giác \(ABC\) vuông tại \(C\).
B.
Tam giác \(ABC\) đều
C.
Tam giác \(ABC\) vuông cân tại \(C\).
D.
Tam giác \(ABC\) cân tại \(C\).
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a

Giả sử \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = R.\)
Khi đó \(A,{\rm{ }}B,{\rm{ }}C\) nằm trên đường tròn \(\left( {O;R} \right)\).
Do \({z_1} + {z_2} = 0\) nên hai điểm \(A,{\rm{ }}B\) đối xứng nhau qua \(O.\) Như vậy điểm \(C\) nằm trên đường tròn đường kính \(AB\) (bỏ đi hai điểm \(A\) và \(B\)) hay tam giác \(ABC\) vuông tại \(C\).
Hướng dẫn giải:
Biểu diễn hình học các điểm biểu diễn \({z_1},{z_2},{z_3}\) và nhận xét tam giác \(ABC\).
Giả sử \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = R.\)
Khi đó \(A,{\rm{ }}B,{\rm{ }}C\) nằm trên đường tròn \(\left( {O;R} \right)\).
Do \({z_1} + {z_2} = 0\) nên hai điểm \(A,{\rm{ }}B\) đối xứng nhau qua \(O.\) Như vậy điểm \(C\) nằm trên đường tròn đường kính \(AB\) (bỏ đi hai điểm \(A\) và \(B\)) hay tam giác \(ABC\) vuông tại \(C\).
Hướng dẫn giải:
Biểu diễn hình học các điểm biểu diễn \({z_1},{z_2},{z_3}\) và nhận xét tam giác \(ABC\).
CÂU HỎI CÙNG CHỦ ĐỀ
Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là
Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)
Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).
Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$
Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
Trong $C$, cho phương trình $a{z^2} + bz + c = 0(a \ne 0)(*),a,b,c\in R$. Gọi $\Delta = {b^2} - 4ac$, ta xét các mệnh đề sau:
1) Nếu \(\Delta \) là số thực âm thì phương trình (*) vô nghiệm
2) Nếu \(\Delta \ne 0\) thì phương trình (*) có $2$ nghiệm phân biệt
3) Nếu \(\Delta = 0\) thì phương trình (*) có nghiệm kép
Trong các mệnh đề trên
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng: