Câu hỏi Đáp án 3 năm trước 96

Trong $C$, cho phương trình $a{z^2} + bz + c = 0(a \ne 0)(*),a,b,c\in R$. Gọi $\Delta  = {b^2} - 4ac$, ta xét các mệnh đề sau:

1) Nếu \(\Delta \)  là số thực âm thì phương trình (*) vô nghiệm

2) Nếu \(\Delta  \ne 0\) thì phương trình (*) có $2$ nghiệm phân biệt

3) Nếu \(\Delta  = 0\) thì phương trình (*) có nghiệm kép

Trong các mệnh đề trên

A.

Không có mệnh đề nào đúng


B.

Có $1$  mệnh đề đúng


C.

Có $2$  mệnh đề đúng


Đáp án chính xác ✅

D.

Cả $3$  mệnh đề đều đúng


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c

1) Sai vì nếu \(\Delta  < 0\) thì phương trình có $2$  nghiệm phức

2) Đúng

3) Đúng

Vậy có $2$  mệnh đề đúng

Hướng dẫn giải:

Phương pháp giải phương trình bậc hai trên tập số phức: $a{x^2} + bx + c = 0\left( {a \ne 0,a,b,c \in R} \right)$

- Tính \(\Delta  = {b^2} - 4ac\).

+ \(\Delta  > 0\) thì phương trình có hai nghiệm thực phân biệt \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}\).

+ \(\Delta  = 0\) thì phương trình có nghiệm kép \({x_{1,2}} =  - \dfrac{b}{{2a}}\).

+ \(\Delta  < 0\) thì phương trình có hai nghiệm phức phân biệt \({x_{1,2}} = \dfrac{{ - b \pm i\sqrt { - \Delta } }}{{2a}}\).

Giải thích thêm:

Một số em có thể sẽ không phân biệt được sự khác nhau giữa cách giải phương trình bậc hai trên tập số phức với tập số thực dẫn đến chọn nhầm đáp án.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là

Xem lời giải » 3 năm trước 119
Câu 2: Trắc nghiệm

Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)

Xem lời giải » 3 năm trước 114
Câu 3: Trắc nghiệm

Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).

Xem lời giải » 3 năm trước 106
Câu 4: Trắc nghiệm

Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?

Đề kiểm tra 1 tiết chương 4: Số phức - Đề số 2 - ảnh 1

Xem lời giải » 3 năm trước 103
Câu 5: Trắc nghiệm

Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$

Xem lời giải » 3 năm trước 103
Câu 6: Trắc nghiệm

Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:

Xem lời giải » 3 năm trước 103
Câu 7: Trắc nghiệm

Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:

Xem lời giải » 3 năm trước 100
Câu 8: Trắc nghiệm

Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$

Xem lời giải » 3 năm trước 100
Câu 9: Trắc nghiệm

Tính môđun của số phức $z$ biết $\overline z  = \left( {4 - 3i} \right)\left( {1 + i} \right)$.

Xem lời giải » 3 năm trước 100
Câu 10: Trắc nghiệm

Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.

Xem lời giải » 3 năm trước 99
Câu 11: Trắc nghiệm

Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)

Xem lời giải » 3 năm trước 98
Câu 12: Trắc nghiệm

Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:

Xem lời giải » 3 năm trước 94
Câu 13: Trắc nghiệm

Cho số phức $z = 1 + \sqrt {3}i $. Khi đó

Xem lời giải » 3 năm trước 94
Câu 14: Trắc nghiệm

Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 93
Câu 15: Trắc nghiệm

Kí hiệu \(a\), \(b\) lần lượt là phần thực và phần ảo của số phức \(z = i\left( {1 - i} \right).\) Khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 92

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »