Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?
A.
\(z\) có phần ảo không nhỏ hơn phần thực
B.
\(z\) có phần thực không nhỏ hơn phần ảo và có môđun không lớn hơn \(3.\)
C.
\(z\) có phần thực bằng phần ảo.
D.
\(z\) có môđun lớn hơn \(3.\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right)\) và \(M\left( {x;y} \right)\) biểu diễn \(z\) trên mặt phẳng tọa độ.
Phần tô đậm là phần nằm dưới đường thẳng \(y=x\) và trong đường tròn tâm O bán kính 3 nên tọa độ của M thỏa mãn:
\(\left\{ \begin{array}{l}{x^2} + {y^2} \le 9\\y \le x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt {{x^2} + {y^2}} \le 3\\y \le x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left| z \right| \le 3\\y \le x\end{array} \right..\)
Hướng dẫn giải:
- Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right)\).
- Tập hợp các điểm bên trong đường tròn tâm O bán kính R là \(x^2+y^2 \le R^2\).
- Tập hợp các điểm bên dưới đường thẳng \(y=x\) là \(y \le x\).
- Nhận xét mối quan hệ của x và y.
Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right)\) và \(M\left( {x;y} \right)\) biểu diễn \(z\) trên mặt phẳng tọa độ.
Phần tô đậm là phần nằm dưới đường thẳng \(y=x\) và trong đường tròn tâm O bán kính 3 nên tọa độ của M thỏa mãn:
\(\left\{ \begin{array}{l}{x^2} + {y^2} \le 9\\y \le x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt {{x^2} + {y^2}} \le 3\\y \le x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left| z \right| \le 3\\y \le x\end{array} \right..\)
Hướng dẫn giải:
- Gọi \(z = x + yi{\rm{ }}\left( {x;{\rm{ }}y \in \mathbb{R}} \right)\).
- Tập hợp các điểm bên trong đường tròn tâm O bán kính R là \(x^2+y^2 \le R^2\).
- Tập hợp các điểm bên dưới đường thẳng \(y=x\) là \(y \le x\).
- Nhận xét mối quan hệ của x và y.
CÂU HỎI CÙNG CHỦ ĐỀ
Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là
Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)
Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).
Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$
Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.
Trong $C$, cho phương trình $a{z^2} + bz + c = 0(a \ne 0)(*),a,b,c\in R$. Gọi $\Delta = {b^2} - 4ac$, ta xét các mệnh đề sau:
1) Nếu \(\Delta \) là số thực âm thì phương trình (*) vô nghiệm
2) Nếu \(\Delta \ne 0\) thì phương trình (*) có $2$ nghiệm phân biệt
3) Nếu \(\Delta = 0\) thì phương trình (*) có nghiệm kép
Trong các mệnh đề trên
Kí hiệu \(a\), \(b\) lần lượt là phần thực và phần ảo của số phức \(z = i\left( {1 - i} \right).\) Khẳng định nào sau đây là đúng?