Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Lý Tự Trọng

Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Lý Tự Trọng

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 82 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 247687

Đường cong của hình bên là đồ thị của hàm số nào dưới đây?

Xem đáp án

Từ đồ thị hàm số đã cho ta thấy:

TXĐ của hàm số:  \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Đồ thị hàm số có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = 2\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \( - 1\) và cắt trục hoành tại điểm có hoành độ bằng \( - \dfrac{1}{2}\).

Suy ra hàm số có đồ thị đã cho là  \(y = \dfrac{{2x + 1}}{{x - 1}}\)

Đáp án  B

Câu 2: Trắc nghiệm ID: 247688

Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{{x^2} + 3x}}{{{x^2} - 4}}\) là

Xem đáp án

Ta có:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{1 + \dfrac{3}{x}}}{{1 - \dfrac{4}{{{x^2}}}}} = 1\)

 Suy ra đồ thị hàm số có 1 đường tiệm cận ngang là \(y = 1\)

\(\mathop {\lim }\limits_{x \to  - {2^ + }} y = \mathop {\lim }\limits_{x \to  - {2^ + }} \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} =  - \infty ;\) \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{{x^2} + 3x}}{{{x^2} - 4}} =  + \infty \)

 Do đó đồ thị hàm số có 2 đường tiệm cận đứng là \(x = 2\) và \(x =  - 2\).

Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.

Đáp án A

Câu 3: Trắc nghiệm ID: 247689

Hàm số \(y = {x^3} - {x^2} - x + 2\) nghịch biến trên khoảng nào dưới đây?

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

Ta có:

       \(\begin{array}{l}y = {x^3} - {x^2} - x + 2\\ \Rightarrow y' = 3{x^2} - 2x - 1 = \left( {3x + 1} \right)\left( {x - 1} \right)\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{1}{3}\\x = 1\end{array} \right.\end{array}\)

BBT của hàm số đã cho như sau:

Từ BBT ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - \dfrac{1}{3};1} \right)\) và đồng biến trên các khoảng \(\left( { - \infty ; - \dfrac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\).

Đáp án  C

Câu 4: Trắc nghiệm ID: 247690

Đường cong của hình bên là đồ thị của hàm số nào dưới đây?

Xem đáp án

Hàm số đã cho là hàm bậc bốn trùng phương nên hàm số đã cho có dạng:   \(y = a{x^4} + b{x^2} + c\)

Ta có:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty \) nên \(a < 0\)

Đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng 3 nên \(c = 3\)

Đồ thị hàm số có các điểm cực tiểu là \(\left( { - 1;4} \right)\) và \(\left( {1;4} \right)\) mà \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} =  - \dfrac{b}{{2a}}\end{array} \right.\) nên \( - \dfrac{b}{{2a}} = 1\)

Đồ thị hàm số cắt trục hoành tại các điểm \(\left( { - \sqrt 3 ;0} \right)\) và \(\left( {\sqrt 3 ;0} \right)\) nên \(9a + 3b + c = 0\)

Suy ra \(a =  - 1;\,\,\,b = 2,\,\,\,\,c = 3\)

Vậy hàm số có đồ thị đã cho là \(y =  - {x^4} + 2{x^2} + 3\).

Đáp án D

Câu 5: Trắc nghiệm ID: 247691

Cho \(a,\,\,m\) là 2 số thực thỏa mãn \(0 < a \ne 1\) và \({\log _a}2 = m\). Giá trị của biểu thức \({a^m} + {a^{ - m}}\) bằng

Xem đáp án

Ta có:

\(\left. \begin{array}{l}{\log _a}2 = m \Leftrightarrow {a^m} = 2\\ \Rightarrow {a^{ - m}} = \dfrac{1}{{{a^m}}} = \dfrac{1}{2}\end{array} \right\} \Rightarrow {a^m} + {a^{ - m}} = 2 + \dfrac{1}{2} = \dfrac{5}{2}\)

Đáp án  B

Câu 6: Trắc nghiệm ID: 247692

Tính tổng các nghiệm của phương trình \(\ln \left( {{x^2} - 3x} \right) = 0\)

Xem đáp án

TXĐ:    \(D = \left( { - \infty ;0} \right) \cup \left( {3; + \infty } \right)\)

Ta có:

\(\begin{array}{l}\ln \left( {{x^2} - 3x} \right) = 0\\ \Leftrightarrow {x^2} - 3x = {e^0}\\ \Leftrightarrow {x^2} - 3x - 1 = 0\,\,\,\,\left( 1 \right)\end{array}\)

Phương trình (1) có 2 nghiệm phân biệt thỏa mãn TXĐ nên tổng các nghiệm của phương trình (1) bằng 3 hay tổng các nghiệm của phương trình đã cho bằng 3.

Đáp án  B

Câu 7: Trắc nghiệm ID: 247693

Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) liên tục và có đồ thị trên \(\mathbb{R}\) như hình bên. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực tiểu?

Xem đáp án

\(x = a\) là cực tiểu của hàm số \(y = f\left( x \right)\)  khi \(a \in D\) và \(f'\left( x \right)\) đổi dấu từ âm \(\left(  -  \right)\) sang dương \(\left(  +  \right)\) khi đi qua điểm \(x = a\).

Từ đồ thị hàm số \(y = f'\left( x \right)\) ta thấy có 3 điểm thuộc đồ thị hàm số và tại đó, \(f'\left( x \right)\) đổi dấu từ âm \(\left(  -  \right)\) sang dương \(\left(  +  \right)\). Do đó hàm số \(y = f\left( x \right)\) có 3 điểm cực tiểu.

Đáp án  C

Câu 8: Trắc nghiệm ID: 247694

Cho \(a,b\) là hai số dương thỏa mãn \(a \ne 1\) và \({\log _a}b = 3\). Khẳng định nào dưới đây là đúng?

Xem đáp án

Ta có:  \({\log _a}b = 3 \Leftrightarrow b = {a^3}\,\,\,\,\left( {0 < a \ne 1,\,\,\,b > 0} \right)\)

Đáp án  C

Câu 9: Trắc nghiệm ID: 247695

Nghiệm của phương trình \({2^x} = 3\) là

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

Ta có:  \({2^x} = 3 \Leftrightarrow x = {\log _2}3\,\,\,\,\left( {t/m} \right)\)

Vậy nghiệm của phương trình đã cho là   \(x = {\log _2}3\)

Đáp án  B

Câu 10: Trắc nghiệm ID: 247696

Một người dự định làm một cái thùng hình trụ bằng tôn có nắp đậy và có thể tích \(V\) cho trước. Hỏi người đó phải làm cái thùng có tỉ lệ giữa chiều cao và bán kính đáy bằng bao nhiêu để tốn ít tôn nhất ?

Xem đáp án

Gọi \(h\) là chiều cao, \(r\) là bán kính đáy của hình trụ đã cho.

Thể tích của hình trụ đã cho là       \(V = \pi {r^2}h\)

 

Để làm cái thùng tốn hết ít tôn nhất thì diện tích toàn phần của cái thùng phải nhỏ nhất

Diện tích toàn phần của cái thùng có nắp là:                  \({S_{tp}} = 2\pi {r^2} + 2\pi rh\)

Áp dụng BĐT AM – GM ta có:

      \({S_{tp}} = 2\pi {r^2} + 2\pi rh = \pi \left( {2{r^2} + rh + rh} \right)\) \( \ge \pi .3\sqrt[3]{{2{r^2}.rh.rh}} = 3\pi \sqrt[3]{{2{V^2}}}\)

Dấu ‘=’ xảy ra khi và chỉ khi \(2{r^2} = rh \Leftrightarrow h = 2r\)

Do đó, để làm cái thùng hết ít tôn nhất thì tỉ lệ giữa chiều cao và bán kính đáy của hình trụ bằng 2.

Đáp án  A

Câu 11: Trắc nghiệm ID: 247697

Giá trị cực tiểu của hàm số \(y =  - {x^3} + 2{x^2} + 7x\) là

Xem đáp án

TXĐ:  \(D = \mathbb{R}\)

Ta có:

\(\begin{array}{l}y =  - {x^3} + 2{x^2} + 7x\\ \Rightarrow y' =  - 3{x^2} + 4x + 7 = \left( {7 - 3x} \right)\left( {x + 1} \right)\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{7}{3}\\x =  - 1\end{array} \right.\end{array}\)

BBT của hàm số đã cho như sau:

Từ BBT ta thấy giá trị cực tiểu của hàm số là   \({y_{CT}} =  - 4\), đạt tại \({x_{CT}} =  - 1\).

Đáp án  C

Câu 12: Trắc nghiệm ID: 247698

Chiều cao \(h\) của khối chóp có diện tích đáy \(B\) và thể tích \(V\) được tính theo công thức nào dưới đây?

Xem đáp án

Thể tích của hình chóp có chiều cao bằng \(h\) và diện tích đáy bằng \(S\) là     \(V = \dfrac{1}{3}Sh\)

Do đó, chiều cao \(h\) của khối chóp trên được tính bởi công thức:        \(h = \dfrac{{3V}}{S}\)

Đáp án  C

Câu 13: Trắc nghiệm ID: 247699

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{2x - 1}}{{x + 2}}\) trên đoạn \(\left[ { - 4; - 3} \right]\) là

Xem đáp án

TXĐ:   \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) nên hàm số đã cho xác định và liên tục trên đoạn \(\left[ { - 4; - 3} \right]\).

Ta có:

         \(\begin{array}{l}y = \dfrac{{2x - 1}}{{x + 2}}\\ \Rightarrow y' = \dfrac{{2\left( {x + 2} \right) - \left( {2x - 1} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \dfrac{5}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \in D\end{array}\)

Do đó, hàm số đã cho luôn đồng biến trên các khoảng xác định. Hay hàm số đã cho đồng biến trên đoạn \(\left[ { - 4; - 3} \right]\)

Suy ra   \(\mathop {\min }\limits_{\left[ { - 4; - 3} \right]} y = f\left( { - 4} \right) = \dfrac{9}{2}\)

Vậy giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 4; - 3} \right]\) bằng  \(\dfrac{9}{2}\).

Đáp án  A

Câu 14: Trắc nghiệm ID: 247700

Tính thể tích \(V\) của khối lăng trụ có chiều cao \(h = 3\,\,cm\) và diện tích đáy \(B = 10\,\,c{m^2}\) 

Xem đáp án

Thể tích của khối lăng trụ có chiều cao \(h = 3\,cm\) và diện tích đáy \(B = 10\,c{m^2}\) là     

\(V = Bh = 10.3 = 30\left( {c{m^3}} \right)\)

Đáp án  C

Câu 15: Trắc nghiệm ID: 247701

Đa diện ở hình bên có bao nhiêu đỉnh?

Xem đáp án

Từ hình vẽ đã cho ta thấy: hình đa diện đã cho có 6 đỉnh.

Đáp án  C

Câu 16: Trắc nghiệm ID: 247702

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(BC = a\sqrt 2 \). Hình chiếu vuông góc \(H\) của \(S\) lên mặt phẳng đáy là trung điểm của đoạn thẳng \(BC\) và \(SA = \dfrac{{\sqrt 3 a}}{2}\)(tham khảo hình bên). Tính thể tích \(V\) của khối chóp đã cho.

Xem đáp án

Tam giác \(ABC\) vuông cân tại \(A\) nên \(\left\{ \begin{array}{l}AH \bot BC\\AH = \dfrac{1}{2}BC = \dfrac{{a\sqrt 2 }}{2}\end{array} \right.\)

\(SH \bot \left( {ABC} \right) \Rightarrow SH \bot AH\)

Tam giác \(SHA\) vuông tại \(H\) nên

             \(SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)}^2}}  = \dfrac{a}{2}\)

\(AH \bot BC \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AH.BC = \dfrac{1}{2}.\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2  = \dfrac{{{a^2}}}{2}\)

Thể tích của khối chóp đã cho là :

               \(V = \dfrac{1}{3}SH.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}}}{2} = \dfrac{{{a^3}}}{{12}}\)

Đáp án  D

Câu 17: Trắc nghiệm ID: 247703

Tập xác định của hàm số \(y = \log \left( {2 - x} \right)\) là

Xem đáp án

Hàm số \(y = \log \left( {2 - x} \right)\) xác định khi và chỉ khi \(2 - x > 0 \Leftrightarrow x < 2\)

Vậy TXĐ của hàm số đã cho là    \(D = \left( { - \infty ;2} \right)\)

Đáp án  A

Câu 18: Trắc nghiệm ID: 247704

Tính thể tích \(V\) của khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB = 2a,\,\,AC = a\sqrt 2 \) và \(AC' = a\sqrt 3 \) (tham khảo hình bên).

Xem đáp án

\(ABC.A'B'C'\) là lăng trụ đứng nên \(C'C \bot \left( {ABC} \right)\) hay \(C'C \bot AC\)

Tam giác \(AC'C\) vuông tại \(C\) nên

\(C'C = \sqrt {AC{'^2} - A{C^2}}  = \sqrt {{{\left( {a\sqrt 3 } \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}}  = a\)

Tam giác  \(ABC\) vuông tại \(A\) nên

\({S_{\Delta ABC}} = \dfrac{1}{2}AC.AB = \dfrac{1}{2}.a\sqrt 2 .2a = \sqrt 2 {a^2}\)

Thể tích của khối lăng trụ đã cho là

\(V = CC'.{S_{\Delta ABC}} = a.\sqrt 2 {a^2} = \sqrt 2 {a^3}\). 

Đáp án  B

Câu 19: Trắc nghiệm ID: 247705

Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\)

Xem đáp án

Theo giả thiết, \(AS,\,AB,\,AC\) đôi một vuông góc nên ta có:

\(AB \bot AC \Rightarrow {S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.2a.3a = 3{a^2}\)

\(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right. \Rightarrow SA \bot \left( {ABC} \right)\)

Do đó,  thể tích của khối chóp \(S.ABC\) là:

\({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}} = \dfrac{1}{3}.a.3{a^2} = {a^3}\)

\(M,\,\,N\) lần lượt là trung điểm của \(SB,\,\,\,SC\) nên:

\(\dfrac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \dfrac{{SA}}{{SA}}.\dfrac{{SM}}{{SB}}.\dfrac{{SN}}{{SC}} = 1.\dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}\)

Suy ra thể tích của khối chóp  \(S.AMN\) là:  \({V_{S.AMN}} = \dfrac{1}{4}{V_{S.ABC}} = \dfrac{{{a^3}}}{4}\)

Đáp án  A

Câu 20: Trắc nghiệm ID: 247706

Một người gửi 500 triệu đồng vào một ngân hàng theo kì hạn 1 năm với lãi suất \(8,6\% /\)năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn ba lần số tiền ban đầu? Giả định trong suốt thời gian gửi, lãi suất không đổi và người đó không rút tiền ra.

Xem đáp án

Với số tiền gửi ban đầu là \(A\), với thể thức lãi kép và lãi suất là \(x\% \)/ 1 năm, ta có:

Sau 1 năm, số tiền cả gốc và lãi nhận được  là :

\({A_1} = A + A.x = A\left( {1 + x} \right)\)

Sau 2 năm, số tiền cả gốc và lãi nhận được là :

\({A_2} = {A_1} + {A_1}.x = {A_1}\left( {1 + x} \right) = A{\left( {1 + x} \right)^2}\)

……..

Sau \(n\) năm, số tiền cả gốc và lãi nhận được là \({A_n} = A{\left( {1 + x} \right)^n}\)

Thay \(A = 500\) triệu  đồng,  \(x = 8,6\% /\)năm và theo giả thiết số tiền nhận được sau \(n\) năm nhiều hơn 3 lần số tiền ban đầu ta có:

\(\begin{array}{l}{A_n} > 3A\\ \Leftrightarrow A.{\left( {1 + 8,6\% } \right)^n} > 3A\\ \Leftrightarrow {\left( {1 + 8,6\% } \right)^n} > 3\\ \Leftrightarrow n > {\log _{\left( {1 + 8,6\% } \right)}}3\\ \Rightarrow n > 13,31\end{array}\)

Do đó, sau ít nhất 14 năm thì số tiền nhận được nhiều hơn 3 lần số tiền gửi ban đầu.

Đáp án  D

Câu 21: Trắc nghiệm ID: 247707

Cho hai số thực dương \(x\) và \(y\) thỏa mãn \({\log _3}x + {\log _3}y =  - 1\). Khẳng định nào dưới đây đúng?

Xem đáp án

Với \(x,\,\,y\) là các số dương ta có:

\(\begin{array}{l}{\log _3}x + {\log _3}y =  - 1\\ \Leftrightarrow {\log _3}xy =  - 1\\ \Leftrightarrow xy = {3^{ - 1}}\\ \Leftrightarrow xy = \dfrac{1}{3}\end{array}\)

Đáp án  C

Câu 22: Trắc nghiệm ID: 247708

Diện tích xung quanh \({S_{xq}}\) của một hình nón có bán kính đáy \(R\) và độ dài đường sinh \(l\) được xác định bởi công thức nào dưới đây? 

Xem đáp án

Diện tích xung quanh \({S_{xq}}\)  của hình nón có bán kính đáy \(R\) và độ dài đường sinh bằng \(l\) được tính bởi công thức: \({S_{xq}} = \pi Rl\)

Đáp án  D

Câu 23: Trắc nghiệm ID: 247709

Cho tứ diện đều \(ABCD\). Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của các cạnh \(DC,\,\,DA,\,\,DB\) (tham khảo hình bên). Mặt phẳng nào dưới đây là một mặt phẳng đối xứng của tứ diện đã cho?

Xem đáp án

Mặt phẳng \(\left( \alpha  \right)\) được gọi là mặt phẳng đối xứng của

tứ diện nếu lấy đối xứng tất cả các điểm của tứ diện

qua mặt phẳng  \(\left( \alpha  \right)\) ta vẫn được tứ diện ban đầu.

Hình tứ diện đều có các mặt phẳng đối xứng là các

mặt phẳng đi qua 1 đỉnh của tứ diện và một trung tuyến của tam giác đối diên.

Hình tứ diện đều \(ABCD\) có các mặt phẳng đối xứng là : \(\left( {ABM} \right),\,\,\left( {ACP} \right),\,\,\left( {BCN} \right)\)

Đáp án  A

Câu 24: Trắc nghiệm ID: 247710

Số nghiệm của phương trình \({2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\) là

Xem đáp án

TXĐ:    \(D = \mathbb{R}\)

Ta có:

\(\begin{array}{l}{2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\\ \Leftrightarrow 2.{\left( {{2^{{x^2} + 2x}}} \right)^2} + {3.2^{{x^2} + 2x}} - 5 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Đặt \(t = {2^{{x^2} + 2x}}\left( {t > 0} \right)\) thì phương trình (1) trở thành:

\(\begin{array}{l}2{t^2} + 3t - 5 = 0\\ \Leftrightarrow \left( {2t + 5} \right)\left( {t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t =  - \dfrac{5}{2}\left( L \right)\\t = 1\left( {t/m} \right)\end{array} \right.\end{array}\)

Với \(t = 1\) ta có:

\(\begin{array}{l}{2^{{x^2} + 2x}} = 1\\ \Leftrightarrow {x^2} + 2x = {\log _2}1\\ \Leftrightarrow {x^2} + 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\end{array} \right.\end{array}\)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

Đáp án  D

Câu 25: Trắc nghiệm ID: 247711

Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 1\) trên đoạn \(\left[ {0;2} \right]\) là

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

Ta có:

\(\begin{array}{l}y = f\left( x \right) = {x^3} - 3x + 1\\ \Rightarrow f'\left( x \right) = 3{x^2} - 3 = 3\left( {x - 1} \right)\left( {x + 1} \right)\\f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

Xét hàm số đã cho trên đoạn  \(\left[ {0;2} \right]\) ta có:             

\(f\left( 0 \right) = 1;f\left( 2 \right) = 3;f\left( {CT} \right) = f\left( 1 \right) =  - 1\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;2} \right]} f\left( x \right) = f\left( 2 \right) = 3\)

Vậy giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;2} \right]\) bằng 3.

Đáp án  B

Câu 26: Trắc nghiệm ID: 247712

Cho hình trụ có chiều cao \(h = a\) và bán kính đáy \(r = 2a\). Tính diện tích toàn phần của hình trụ.

Xem đáp án

Diện tích toàn phần của hình trụ có bán kính đáy  \(r = 2a\)  và chiều cao \(h = a\) là:

\({S_{tp}} = 2\pi {r^2} + 2\pi rh = 2\pi .{\left( {2a} \right)^2} + 2\pi .2a.a = 12\pi {a^2}\)

Đáp án  B

Câu 27: Trắc nghiệm ID: 247713

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?

Xem đáp án

Từ đồ thị hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) ta có:

\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty  \Rightarrow a > 0\)

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên \(d < 0\)

Hàm số có 2 điểm cực trị \({x_1};\,\,{x_2}\) trong đó  \({x_1} < 0 = {x_2}\). Ta có:

\(\begin{array}{l}f\left( x \right) = a{x^3} + b{x^2} + cx + d\\ \Rightarrow f'\left( x \right) = 3a{x^2} + 2bx + c\end{array}\)

Hàm số có 2 điểm cực trị \({x_1};\,{x_2}\) nên \({x_1};\,\,{x_2}\) là 2  nghiệm phân biệt của phương trình \(f'\left( x \right) = 0\). Do đó,

\(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{{2b}}{{3a}}\\{x_1}.{x_2} = \dfrac{c}{{3a}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\dfrac{{ - 2b}}{{3a}} < 0\\\dfrac{c}{{3a}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a > 0\\b > 0\\c = 0\end{array} \right.\)

Vậy \(a > 0,\,\,b > 0,\,\,c = 0,\,\,d < 0\)

Đáp án  B

Câu 28: Trắc nghiệm ID: 247714

Cho hàm số \(y = \dfrac{{mx - 1}}{{2x + 1}}\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max }\limits_{\left[ {1;2} \right]} y = 3\). Khẳng định nào dưới đây đúng?

Xem đáp án

TXĐ:  \(D = \mathbb{R}\backslash \left\{ { - \dfrac{1}{2}} \right\}\). Do đó, hàm số đã cho xác định và liên tục trên đoạn \(\left[ {1;2} \right]\)

Ta có:\(y = \dfrac{{mx - 1}}{{2x + 1}}\)

\( \Rightarrow y' = \dfrac{{m\left( {2x + 1} \right) - 2\left( {mx - 1} \right)}}{{{{\left( {2x + 1} \right)}^2}}}\) \( = \dfrac{{2mx + m - 2mx + 2}}{{{{\left( {2x + 1} \right)}^2}}} = \dfrac{{m + 2}}{{{{\left( {2x + 1} \right)}^2}}}\)

Nếu \(m + 2 > 0 \Leftrightarrow m >  - 2\) thì \(y' > 0,\forall x \in D\) hay hàm số đã cho đồng biến trên đoạn \(\left[ {1;2} \right]\). Do đó,

\(\mathop {\max }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right) \Leftrightarrow f\left( 2 \right) = 3 \Leftrightarrow \dfrac{{2m - 1}}{{2.2 + 1}} = 3 \Leftrightarrow m = 8\) (thỏa mãn)

Nếu \(m + 2 < 0 \Leftrightarrow m <  - 2\) thì \(y' < 0,\forall x \in D\) hay hàm số đã cho nghịch biến trên đoạn \(\left[ {1;2} \right]\). Do đó,

\(\mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 1 \right) \Leftrightarrow f\left( 1 \right) = 3 \Leftrightarrow \dfrac{{m - 1}}{{2.1 + 1}} = 3 \Leftrightarrow m = 10\) (Không thỏa mãn \(m <  - 2\))

Vậy \(m = 8\) hay \(7 < m < 10\)

Đáp án  A

Câu 29: Trắc nghiệm ID: 247715

Hàm số \(y = {e^{{x^2} + 1}}\) có đạo hàm là

Xem đáp án

Đạo hàm của hàm số \(y = {e^{{x^2} + 1}}\) là   \(y' = \left( {{x^2} + 1} \right)'.{e^{{x^2} + 1}} = 2x.{e^{{x^2} + 1}}\)

Đáp án  B

Câu 30: Trắc nghiệm ID: 247716

Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{{{m^2}x - 4}}{{4x - 1}}\) đồng biến trên mỗi khoảng xác định?

Xem đáp án

TXĐ: \(D = \mathbb{R}\backslash \left\{ {\dfrac{1}{4}} \right\}\)

Ta có:\(y = \dfrac{{{m^2}x - 4}}{{4x - 1}}\) \( \Rightarrow y' = \dfrac{{{m^2}\left( {4x - 1} \right) - 4\left( {{m^2}x - 4} \right)}}{{{{\left( {4x - 1} \right)}^2}}}\) \( = \dfrac{{4{m^2}x - {m^2} - 4{m^2}x + 16}}{{{{\left( {4x - 1} \right)}^2}}} = \dfrac{{16 - {m^2}}}{{{{\left( {4x - 1} \right)}^2}}}\)

Hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi \(y' \ge 0,\forall x \in D\)  (Dấu ‘=’ chỉ xảy ra tại một số hữu hạn điểm).

Do đó, hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi

\(\dfrac{{16 - {m^2}}}{{{{\left( {4m - 1} \right)}^2}}} \ge 0 \Leftrightarrow 16 - {m^2} \ge 0 \Leftrightarrow  - 4 \le m \le 4\)

Dấu ‘=’ ở trên không thể xảy ra vì khi \(m =  \pm 4\) thì \(y' = 0,\forall x \in D\)

Do đó, \( - 4 < m < 4\) thì hàm số đã cho đồng biến trên từng khoảng xác định. Mà \(m\) là số nguyên nên \(m \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}\)

Vậy có 7 giá trị nguyên của \(m\) thỏa mãn.

Đáp án  C

Câu 31: Trắc nghiệm ID: 247717

Cho số dương \(x\) khác 1. Biểu thức \(\sqrt {{x^3}} :\sqrt[3]{{{x^2}}}\) được viết dưới dạng lũy thừa của \(x\) với số mũ hữu tỉ là

Xem đáp án

Ta có:

\(\sqrt {{x^3}} :\sqrt[3]{{{x^2}}} = {x^{\dfrac{3}{2}}}:{x^{\dfrac{2}{3}}} = {x^{\dfrac{3}{2} - \dfrac{2}{3}}} = {x^{\dfrac{5}{6}}}\)

Đáp án  C

Câu 32: Trắc nghiệm ID: 247718

Cho hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\) (với \(m\) là tham số). Gọi \(\left[ {a;b} \right]\) là tập hợp tất cả các giá trị của \(m\) để hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\). Tính giá trị của biểu thức \(T = a + 3b\) 

Xem đáp án

TXĐ:  \(D = \mathbb{R}\). Hàm số đã cho xác định và liên tục trên khoảng \(\left( {4; + \infty } \right)\)

Ta có:

\(\begin{array}{l}y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\\ \Rightarrow y' = {x^2} - 2\left( {m + 1} \right)x - \left( {3{m^2} + 2m} \right)\end{array}\)

Hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\) khi và chỉ khi:

\(\begin{array}{l}y' \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x - \left( {3{m^2} + 2m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow \left( {{x^2} + mx} \right) - \left[ {\left( {3m + 2} \right)x + \left( {3{m^2} + 2m} \right)} \right] \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow x\left( {x + m} \right) - \left( {3m + 2} \right)\left( {x + m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\\ \Leftrightarrow \left[ {x - \left( {3m + 2} \right)} \right]\left( {x + m} \right) \ge 0,\forall x \in \left( {4; + \infty } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Nếu \(3m + 2 =  - m \Leftrightarrow m =  - \dfrac{1}{2}\) thì   \(\left( 1 \right)\) luôn đúng.

Nếu \(3m + 2 >  - m \Leftrightarrow m >  - \dfrac{1}{2}\) thì   \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x \ge 3m + 2\\x \le  - m\end{array} \right.,\forall x \in \left( {4; + \infty } \right) \Leftrightarrow 3m + 2 \le 4 \Leftrightarrow m \le \dfrac{2}{3}\)

Nếu \(3m + 2 <  - m \Leftrightarrow m <  - \dfrac{1}{2}\) thì  \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x \le 3m + 2\\x \ge  - m\end{array} \right.,\forall x \in \left( {4; + \infty } \right) \Leftrightarrow 4 \ge  - m \Leftrightarrow m \ge  - 4\)

Vậy \(m \in \left[ { - 4;\dfrac{2}{3}} \right]\) thì hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\)

Do đó,  \(T = a + 3b =  - 4 + 3.\dfrac{2}{3} =  - 2\)

Đáp án  D

Câu 33: Trắc nghiệm ID: 247719

Cho hàm số \(y = a{x^4} + b{x^2} + c\) (với \(a,\,b,\,c \in \mathbb{R}\)) có đồ thị như hình bên. Số điểm cực đại của đồ thị hàm số là: 

Xem đáp án

Từ đồ thị hàm số đã cho ta thấy đồ thị hàm số đã cho có 2 điểm cực đại và 1 điểm cực tiểu.

Đáp án  C

Câu 34: Trắc nghiệm ID: 247720

Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\). Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để đường thẳng \(d:\,\,y = mx + m + 1\) cắt \(\left( C \right)\) tại 2 điểm \(A,\,B\) sao cho độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \). Tích các phần tử của \(S\) là 

Xem đáp án

TXĐ:   \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

Phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị hàm số \(\left( C \right)\) là:

\(\begin{array}{l}\dfrac{{x - 1}}{{x + 1}} = mx + m + 1\\ \Leftrightarrow \left( {x - 1} \right) = \left( {mx + m + 1} \right)\left( {x + 1} \right)\\ \Leftrightarrow m{x^2} + mx + mx + m + x + 1 = x - 1\\ \Leftrightarrow m{x^2} + 2mx + m + 2 = 0\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác \( - 1\)

Suy ra   \(\left\{ \begin{array}{l}\Delta ' > 0\\m.{\left( { - 1} \right)^2} + 2m.\left( { - 1} \right) + m + 2 \ne 0\end{array} \right. \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - m\left( {m + 2} \right) > 0 \Leftrightarrow m < 0\)

Với \(m < 0,\) phương trình (1) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - 2m}}{m}\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right.\)

Suy ra, đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt \(A\left( {{x_1};m{x_1} + m + 1} \right);\,\,\,\,B\left( {{x_2};m{x_2} + m + 1} \right)\)

Ta có:

 \(\begin{array}{l}AB = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left[ {\left( {m{x_1} + m + 1} \right) - \left( {m{x_2} + m + 1} \right)} \right]}^2}}  = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {m^2}{{\left( {{x_1} - {x_2}} \right)}^2}}  = 2\sqrt 5 \end{array}\)

\(\begin{array}{l} \Leftrightarrow \left( {{m^2} + 1} \right){\left( {{x_1} - {x_2}} \right)^2} = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( { - 2} \right)}^2} - 4.\dfrac{{m + 2}}{m}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\dfrac{{ - 8}}{m} = 20\end{array}\)

\(\begin{array}{l} \Leftrightarrow  - 8{m^2} - 8 = 20m\\ \Leftrightarrow \left[ \begin{array}{l}m =  - \dfrac{1}{2}\\m =  - 2\end{array} \right.\,\,\,\,\left( {t/m} \right)\end{array}\)

Vậy tích các giá trị của \(m\) thỏa mãn là      \(S = \left( { - \dfrac{1}{2}} \right).\left( { - 2} \right) = 1\)

Đáp án  B

Câu 35: Trắc nghiệm ID: 247721

Giá trị của \({3^{\dfrac{1}{2}}}.\sqrt 3 \) bằng

Xem đáp án

Ta có: 

\({3^{\dfrac{1}{2}}}.\sqrt 3  = {3^{\dfrac{1}{2}}}{.3^{\dfrac{1}{2}}} = {3^{\dfrac{1}{2} + \dfrac{1}{2}}} = {3^1} = 3\)

Đáp án  C

Câu 36: Trắc nghiệm ID: 247722

Gọi \({m_0}\) là giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 2\) có ba điểm cực trị \(A,\,B,\,C\) tạo thành một tam giác sao cho trục \(Ox\) chia tam giác đó thành \(2\) phần có diện tích lần lượt bằng \({S_1},\,\,{S_2}\) và \(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{1}{3}\), trong đó \({S_2}\) là diện tích của phần nằm dưới \(Ox\). Khẳng định nào dưới đây đúng? 

Xem đáp án

TXĐ:  \(D = \mathbb{R}\)

Ta có:

\(\begin{array}{l}y = {x^4} + 2m{x^2} + 2\\ \Rightarrow y' = 4{x^3} + 4mx = 4x\left( {{x^2} + m} \right)\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} =  - m\end{array} \right.\end{array}\)

Để hàm số đã cho có 3 điểm cực trị thì phương trình \({x^2} =  - m\) có 2 nghiệm phân biệt khác 0. Suy ra \(m < 0\)

Khi đó, 3 điểm cực trị của đồ thị hàm số là  \(A\left( {0;2} \right);\,\,\,B\left( {\sqrt { - m} ; - {m^2} + 2} \right);\,\,\,C\left( { - \sqrt { - m} ; - {m^2} + 2} \right)\).

Phương trình đường thẳng \(BC\) là   \(y =  - {m^2} + 2\)

Gọi giao\(AB\) và \(AC\) với trục \(Ox\) lần lượt là \(M,\,\,N\). Suy ra \({S_1} = {S_{\Delta AMN}}\)

Ta có:

\(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{1}{3} \Leftrightarrow \dfrac{{{S_{AMN}}}}{{{S_{MNBC}}}} = \dfrac{1}{3} \Rightarrow \dfrac{{{S_{AMN}}}}{{{S_{ABC}}}} = \dfrac{1}{4}\)

 Ta thấy \(Ox//BC\) hay \(MN//BC\). Gọi \(H,\,\,K\) lần lượt là giao điểm của \(Oy\) với  \(BC\) và \(MN\).

\(A\) nằm trên \(Ox\) mà \(Ox//BC\) nên \(AH \bot BC,\,\,\,AK \bot MN\)

Suy ra     \(\dfrac{{{S_{AMN}}}}{{{S_{ABC}}}} = \dfrac{1}{4} \Leftrightarrow {\left( {\dfrac{{AK}}{{AH}}} \right)^2} = \dfrac{1}{4} \Leftrightarrow \dfrac{{AK}}{{AH}} = \dfrac{1}{2}\)

\(A\left( {0;2} \right)\), \(K\) là giao điểm của \(Oy\) và \(MN\) mà \(MN \in Ox\) nên \(K\left( {0;0} \right)\)

Suy ra \(AK = 2\) \( \Rightarrow AH = 4\)

\(H\) là giao của \(BC\) và \(Ox\) nên \(H\left( {0; - {m^2} + 2} \right)\), \(H\) nằm dưới trục hoành. Suy  ra

\( - {m^2} + 2 =  - 2 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\)

Mà \(m < 0\) nên \(m =  - 2\)

Vậy \({m_0} \in \left( { - 3;1} \right)\)

Đáp án  A

Câu 37: Trắc nghiệm ID: 247723

Trong không gian, cho hình chữ nhật \(ABCD\). Khi quay hình chữ nhật đó xung quanh đường thẳng chứa cạnh \(AB\) thì đường gấp khúc \(ADCB\) tạo thành một hình nào dưới đây?

Xem đáp án

Khi quay hình chữ nhật \(ABCD\)  quanh đường thẳng chứa cạnh \(AB\) ta được một hình trụ có chiều cao bằng độ dài cạnh \(AB\) và bán kính đáy có độ dài bằng \(AD\).

Đáp án  D

Câu 38: Trắc nghiệm ID: 247724

Trong không gian, cho mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( \alpha  \right)\) cắt nhau theo giao tuyến là đường tròn \(\left( C \right)\). Biết rằng \(\left( S \right)\) có tâm \(O\), bán kính \(R = 4a,\) khoảng cách từ \(O\) đến \(\left( \alpha  \right)\) bằng \(2a\). Tính bán kính \(r\) của \(\left( C \right)\).

Xem đáp án

Gọi \(I\) là tâm của đường tròn \(\left( C \right)\)

Khoảng cách từ tâm \(O\) của mặt cầu đến mặt phẳng \(\left( \alpha  \right)\)

bằng độ dài đoạn \(OI\) nên \(OI = 2a\)

Suy ra bán kính của mặt cầu \(\left( C \right)\) là

\(r = \sqrt {{R^2} - O{I^2}}  = \sqrt {{{\left( {4a} \right)}^2} - {{\left( {2a} \right)}^2}}  = 2\sqrt 3 a\)

Đáp án  B

Câu 39: Trắc nghiệm ID: 247725

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), mặt bên hợp với mặt đáy một góc bằng \(45^\circ \) (tham khảo hình bên). Tính thể tích \(V\) của khối cầu ngoại tiếp hình chóp đã cho.

Xem đáp án

Gọi \(G\) là trọng tâm tam giác \(ABC\), \(M\) là trung điểm \(BC\)

Suy ra \(A,\,\,G,\,\,M\) thẳng hàng và \(AG = \dfrac{2}{3}AM\)

\(S.ABC\) là hình chóp tam giác đều nên \(G\) là tâm đường tròn ngoại tiếp tam giác \(ABC\) và \(SG \bot \left( {ABC} \right)\)

Gọi \(I\) là tâm mặt cầu ngoại tiếp khối chóp \(S.ABC\). Suy ra \(I\) nằm trên \(SG\)

Ta có:

Tam giác \(ABC\) là tam giác đều có cạnh bằng \(2a\) nên \(AM = \dfrac{{\sqrt 3 }}{2}AB = \sqrt 3 a \Rightarrow AG = \dfrac{2}{3}AM = \dfrac{{2\sqrt 3 }}{3}a\)

\(\left\{ \begin{array}{l}SG \bot \left( {ABC} \right) \Rightarrow SG \bot BC\\AM \bot BC\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow BC \bot SM\)

Do đó, góc tạo bởi mặt bên và mặt đáy là góc giữa \(SM\) và \(AM\) hay \(\widehat {SMA} = 45^\circ \). Suy ra, 

 \(SG = GM = \dfrac{1}{3}AM = \dfrac{{\sqrt 3 a}}{3}\)

\(I\)  là tâm mặt cầu ngoại tiếp khối chóp \(S.ABC\) nên \(R = IS = IA = IB = IC\)

Ta có:

\(\begin{array}{l}SI = R \Rightarrow IG = SG - SI = \dfrac{{\sqrt 3 }}{3}a - R\\A{G^2} + I{G^2} = A{I^2}\\ \Leftrightarrow {\left( {\dfrac{{2\sqrt 3 }}{3}a} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{3}a - R} \right)^2} = {R^2}\\ \Rightarrow R = \dfrac{{5\sqrt 3 }}{6}a\end{array}\)   

Vậy thể tích của khối cầu ngoại tiếp hình chóp là:

\(V = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi .{\left( {\dfrac{{5\sqrt 3 }}{6}} \right)^3} = \dfrac{{125\sqrt 3 \pi {a^3}}}{{54}}\)

Đáp án  D

Câu 40: Trắc nghiệm ID: 247726

Tập xác định của hàm số \(y = {\left( {{x^2} + x} \right)^{\dfrac{1}{3}}}\) là 

Xem đáp án

Hàm số \(y = {\left( {{x^2} + x} \right)^{\dfrac{1}{3}}}\) xác định khi và chỉ khi \({x^2} + x > 0 \Leftrightarrow x\left( {x + 1} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x <  - 1\end{array} \right.\)

Vậy tập xác định của hàm số đã cho là     \(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\)

Đáp án  D

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »