Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Nguyễn Hiền
Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Nguyễn Hiền
-
Hocon247
-
40 câu hỏi
-
60 phút
-
204 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Công thức diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,\) \(x = b\) là:
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Công thức diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,\) \(x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Nghiệm phức có phần ảo dương của phương trình \({z^2} - 2z + 5 = 0\) là:
Phương trình \({z^2} - 2z + 5 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}z = 1 + 2i\\z = 1 - 2i\end{array} \right.\)
Vậy nghiệm phức có phần ảo dương là \(z = 1 + 2i.\)
Cho hình phẳng \(\left( H \right)\) được giới hạn bởi các đường \(x = 0,\) \(x = \pi ,\) \(y = 0\) và \(y = - \cos x\). Thể tích V của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục Ox được tính theo công thức:
Cho hình phẳng \(\left( H \right)\) được giới hạn bởi các đường \(x = a,\) \(x = b,\) \(y = 0\) và \(y = f\left( x \right)\). Thể tích V của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục Ox được tính theo công thức: \(V = \pi \int\limits_0^\pi {{{\left( { - \cos x} \right)}^2}dx} = \pi \int\limits_0^\pi {{{\cos }^2}xdx} .\)
Trong không gian Oxyz, cho điểm \(A\left( {1; - 4; - 3} \right)\) và \(\overrightarrow n = \left( { - 2;5;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm A và nhận \(\overrightarrow n \) làm vecto pháp tuyến là
Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {1; - 4; - 3} \right)\) và có vecto pháp tuyến là \(\overrightarrow n = \left( { - 2;5;2} \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \( - 2\left( {x - 1} \right) + 5\left( {y + 4} \right) + 2\left( {z + 3} \right) = 0\)\( \Leftrightarrow - 2x + 5y + 2z + 28 = 0.\)
Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} - 2x + 3\) là:
Ta có \(\int {f\left( x \right)dx} = \int {\left( {3{x^2} - 2x + 3} \right)dx} \).
\( \Rightarrow \int {f\left( x \right) = {x^3} - {x^2} + 3x + C} .\)
Cho hai hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Công thức tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số trên và các đường thẳng \(x = a,\) \(x = b\) là:
Cho hàm số \(f\left( x \right)\)liên tục \(\left[ {a;b} \right]\), diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\), các đường thẳng \(x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {1;9} \right]\), thỏa mãn \(\int\limits_1^9 {f\left( x \right)dx = 7} \) và \(\int\limits_4^5 {f\left( x \right)dx = 3} \). Tính giá trị biểu thức \(P = \int\limits_1^4 {f\left( x \right)dx + } \int\limits_5^9 {f\left( x \right)dx.} \)
Ta có:
\(\begin{array}{l}P = \int\limits_1^4 {f\left( x \right)dx + } \int\limits_5^9 {f\left( x \right)dx.} \\P = \int\limits_1^9 {f\left( x \right)dx + } \int\limits_9^4 {f\left( x \right)dx} \\ + \int\limits_5^4 {f\left( x \right)dx} + \int\limits_4^9 {f\left( x \right)dx} \\P = \int\limits_1^9 {f\left( x \right)dx} - \int\limits_4^5 {f\left( x \right)dx} \\P = 7 - 3 = 4.\end{array}\)
Trong không gian Oxyz, cho điểm \(A\left( {2;3;5} \right)\). Tìm tọa độ điểm A’ là hình chiếu vuông góc của A lên trục Oy.
Hình chiếu của điểm \(A\left( {2;3;5} \right)\) lên trục Oy là điểm \(A'\left( {0;3;0} \right).\)
Trong không gian Oxyz, viết phương trình đường thẳng đi qua điểm \(A\left( {1;2;3} \right)\) và có vecto chỉ phương \(\overrightarrow u = \left( {2; - 1; - 2} \right).\)
Đường thẳng đi qua \(A\left( {1;2;3} \right)\) và có vecto chỉ phương \(\overrightarrow u = \left( {2; - 1; - 2} \right)\) có dạng: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 2}}\)
Gọi \({z_1};\,\,{z_2}\) là hai nghiệm của phương trình \(2{z^2} + 10z + 13 = 0\), trong đó \({z_1}\) có phần ảo dương. Số phức \(2{z_1} + 4{z_2}\) bằng
Ta có \(2{z^2} + 10z + 13 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}z = - \frac{5}{2} + \frac{1}{2}i\\z = - \frac{5}{2} - \frac{1}{2}i\end{array} \right.\)
Mà \({z_1}\) có phần ảo dương nên \({z_1} = - \frac{5}{2} + \frac{1}{2}i;\,\,{z_2} = - \frac{5}{2} - \frac{1}{2}i.\)
Vậy \(2{z_1} + 4{z_2} = - 15 - i.\)
Số phức \(z = \frac{{5 + 15i}}{{3 + 4i}}\) có phần thực là
\(z = \frac{{5 + 15i}}{{3 + 4i}} = 3 + i\)
Vậy phần thực của z bằng 3.
Trong không gian Oxyz, một vecto pháp tuyến của mặt phẳng \(\frac{x}{{ - 5}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1\) là:
Ta có \(\frac{x}{{ - 5}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1\)\( \Leftrightarrow 2x - 10y + 5z + 10 = 0\)
Suy ra mặt phẳng có 1 vecto pháp tuyến là \(\overrightarrow n = \left( {2; - 10;5} \right).\)
Phần thực của số phức \(\left( {2 - i} \right)\left( {1 + 2i} \right)\) là:
Ta có \(z = \left( {2 - i} \right)\left( {1 + 2i} \right) = 4 + 3i.\)
Vậy phần thực của số phức z là 4.
Cho các số phức \({z_1} = 3 + 4i,\) \({z_2} = 5 - 2i\). Tìm số phức liên hơp \(\overline z \) của số phức \(z = 2{z_1} + 3{z_2}\).
Ta có \(\left\{ \begin{array}{l}{z_1} = 3 + 4i\\{z_2} = 5 - 2i\end{array} \right.\)
\( \Rightarrow z = 2{z_1} + 3{z_2}\) \( = 2\left( {3 + 4i} \right) + 3\left( {5 - 2i} \right)\) \( = 21 + 2i\)
\( \Rightarrow \overline z = 21 - 2i.\)
Trong không gian Oxyz, các vecto đơn vị trên các trục Ox,Oy,Oz lần lượt là \(\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k \) cho điểm \(M\left( {3; - 4;12} \right)\). Mệnh đề nào sau đây đúng?
Ta có \(M\left( {3; - 4;12} \right)\)\( \Rightarrow \overrightarrow {OM} = 3\overrightarrow i - 4\overrightarrow j + 12\overrightarrow k \)
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( {3;1;2} \right)\) và vuông góc với mặt phẳng \(x + y + 3z + 5 = 0\) có phương trình là
Mặt phẳng \(\left( P \right):x + y + 3z + 5 = 0\) có 1 VTPT \(\overrightarrow {{n_P}} = \left( {1;1;3} \right).\)
Vì đường thẳng d vuông góc với mặt phẳng (P) nên có 1 VTCP \(\overrightarrow {{u_d}} = \overrightarrow {{n_P}} = \left( {1;1;3} \right).\)
Mà đường thẳng d đi qua \(A\left( {3;1;2} \right)\) nên phương trình đường thẳng d là \(\frac{{x - 3}}{1} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}.\)
\(\int {{e^{ - 2x + 1}}dx} \) bằng
Ta có \(\int {{e^{ - 2x + 1}}dx = - \frac{1}{2}{e^{ - 2x + 1}} + C} \)
Tính môđun \(\left| z \right|\) của số phức \(z = \left( {2 + i} \right){\left( {1 + i} \right)^2} + 1\).
Ta có \(z = \left( {2 + i} \right){\left( {1 + i} \right)^2} + 1 = - 1 + 4i.\)
Vậy \(\left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {4^2}} = \sqrt {17} .\)
Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\).
Ta có \({z^2} - 2z + 5 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}z = 1 + 2i\\z = 1 - 2i\end{array} \right.\)
Mà \({z_1} - {z_2}\) có phần ảo là số thực âm nên \(\left\{ \begin{array}{l}{z_1} = 1 - 2i\\{z_2} = 1 + 2i\end{array} \right..\)
\( \Rightarrow {\rm{w}} = 2z_1^2 - z_2^2 = - 3 - 12i\).
Vậy phần ảo của số phức w là \( - 12.\)
Cho tích phân \(I = \int\limits_1^e {\frac{{2\ln x + 3}}{x}dx} \). Nếu đặt \(t = \ln x\) thì:
Đặt \(t = \ln x \Rightarrow dt = \frac{{dx}}{x}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 0\\x = e \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {\left( {2t + 3} \right)dt} \)
Biết \(\int\limits_1^3 {\frac{{2x - 3}}{{x + 1}}dx} = a\ln 2 + b\) với \(a,\,\,b\) là các số hữu tỉ. Khi đó \({b^2} - 2a\) bằng
Ta có
\(\begin{array}{l}I = \int\limits_1^3 {\frac{{2x - 3}}{{x + 1}}dx} = \int\limits_1^3 {\frac{{2x + 2 - 5}}{{x + 1}}dx} \\I = \int\limits_1^3 {\left( {2 - \frac{5}{{x + 1}}} \right)dx} \\ = \left. {\left( {2x - 5\ln \left| {x + 1} \right|} \right)} \right|_1^3\\I = 6 - 5\ln 4 - 2 + 5\ln 2\\ = 4 - 5\ln {2^2} + 5\ln 2\\I = 4 - 10\ln 2 + 5\ln 2\\ = 4 - 5\ln 2\end{array}\)
Khi đó \(a = 4;\,\,b = - 5\,\,\left( {tm} \right).\)
Vậy \({b^2} - 2a = {\left( { - 5} \right)^2} - 2.4 = 17.\)
Cho hai số phức \({z_1} = - 1 + 2i;\) \({z_2} = 1 + 2i\). Tinh \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)
Ta có
\(\begin{array}{l}{z_1} = - 1 + 2i\\ \Rightarrow \left| {{z_1}} \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} = \sqrt 5 \\{z_2} = 1 + 2i\\ \Rightarrow \left| {{z_2}} \right| = \sqrt {{1^2} + {2^2}} = \sqrt 5 \end{array}\)
Vậy \(T = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 5 + 5 = 10.\)
Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx = - \frac{a}{b} + \frac{\pi }{c}} \) với \(a,\,\,b,\,\,c \in \mathbb{N}\), phân số \(\frac{a}{b}\) tối giản. Tính \(T = a + b + c.\)
Ta có \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx} \)
Đặt \(t = \tan x\)\( \Rightarrow dt = \frac{{dx}}{{{{\cos }^2}x}}\) \( = \left( {1 + {{\tan }^2}x} \right)dx\) \( = \left( {1 + {t^2}} \right)dx\)
\( \Rightarrow dx = \frac{{dt}}{{1 + {t^2}}}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{\pi }{4} \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {\left( {{t^2} + 2{t^8}} \right)\frac{{dt}}{{{t^2} + 1}}} \)
\(\begin{array}{l} \Rightarrow I = \int\limits_0^1 {\left( {2{t^6} - 2{t^4} + 2{t^2} - 1 + \frac{1}{{{t^2} + 1}}} \right)dt} \\ \Rightarrow I = \left. {\left( {\frac{{2{t^7}}}{7} - \frac{{2{t^5}}}{5} + \frac{{2{t^3}}}{3} - t} \right)} \right|_0^1 + \int\limits_0^1 {\frac{{dt}}{{{t^2} + 1}}} \\ \Rightarrow I = - \frac{{47}}{{105}} + {I_1}\end{array}\)
Đặt \(t = \tan u\)\( \Rightarrow dt = \frac{1}{{{{\cos }^2}u}}du = \left( {1 + {{\tan }^2}u} \right)du\)
Đổi cận: \(\left\{ \begin{array}{l}t = 0 \Rightarrow u = 0\\t = 1 \Rightarrow u = \frac{\pi }{4}\end{array} \right.\).
Khi đó ta có: \({I_1} = \int\limits_0^{\frac{\pi }{4}} {\frac{{\left( {1 + {{\tan }^2}u} \right)du}}{{1 + {{\tan }^2}u}}} = \int\limits_0^{\frac{\pi }{4}} {du} = \frac{\pi }{4}\).
\( \Rightarrow I = - \frac{{47}}{{105}} + \frac{\pi }{4}\)\( \Rightarrow a = 47,\,\,b = 105,\,\,c = 4\)
Vậy \(T = a + b + c\)\( = 47 + 105 + 4 = 156\)
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;1} \right)\) và cắt mặt phẳng \(\left( P \right):2x - y + 2z + 7 = 0\) theo một đường tròn có đường kính bằng 8. Phương trình mặt cầu \(\left( S \right)\) là:
Mặt phẳng (P) cắt mặt cầu theo 1 đường tròn có đường kính bằng 8 nên có bán kính r = 4.
Ta có: \(d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 - 2 + 2.1 + 7} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 3\)
Gọi R là bán kính mặt cầu (S), áp dụng định lí Pytago ta có: \({R^2} = {r^2} + {d^2} = {4^2} + {3^2} = 25\)
Vậy phương trình mặt cầu là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 25\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(I\left( {3;4; - 5} \right)\) và mặt phẳng \(\left( P \right)\) có phương trình \(2x + 6y - 3z + 4 = 0\). Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và tiếp xúc với \(\left( P \right)\) là:
+) \(\left( P \right)\) tiếp xúc với \(\left( S \right)\)
\( \Rightarrow d\left( {I;\left( P \right)} \right) = R\) \( = \frac{{\left| {2.3 + 6.4 - 3\left( { - 5} \right) + 4} \right|}}{{\sqrt {{2^2} + {6^2} + {{\left( { - 3} \right)}^2}} }}\) \( = \frac{{49}}{7} = 7\)
+) Phương trình mặt cầu \(\left( S \right)\) có tâm \(I\) và tiếp xúc với \(\left( P \right)\) là: \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\)
Trong không gian Oxyz, biết \(\overrightarrow n = \left( {a;b;c} \right)\) là vecto pháp tuyến của mặt phẳng qua \(A\left( {2;1;5} \right)\) và chứa trục Ox. Tính \(k = \frac{b}{c}.\)
Ta có: \(\left\{ \begin{array}{l}OA \subset \left( P \right)\\Ox \subset \left( P \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {OA} ;\overrightarrow i } \right]\) là 1 VTPT của (P).
\(\overrightarrow {OA} = \left( {2;1;5} \right),\,\,\overrightarrow i = \left( {1;0;0} \right)\) \( \Rightarrow \left[ {\overrightarrow {OA} ;\overrightarrow i } \right] = \left( {0;5; - 1} \right)\).
Vì \(\overrightarrow n \left( {a;b;c} \right)\) cũng là 1 VTPT của (P), ta chọn \(\overrightarrow n = \left[ {\overrightarrow {OA} ;\overrightarrow i } \right] = \left( {0;5; - 1} \right)\) \( \Rightarrow a = 0,\,\,b = 5,\,\,c = - 1\).
Vậy \(k = \frac{b}{c} = \frac{5}{{ - 1}} = - 5\).
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).
Xét phương trình hoành độ giao điểm: \({x^3} - x = x - {x^2}\)\( \Leftrightarrow {x^3} + {x^2} - 2x = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\end{array} \right.\)
Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - x\) và \(y = x - {x^2}\) là
\(\begin{array}{l}S = \int\limits_{ - 2}^1 {\left| {{x^3} + {x^2} - 2x} \right|dx} \\ = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} + {x^2} - 2x} \right)dx} } \right|\\ + \left| {\int\limits_0^1 {\left( {{x^3} + {x^2} - 2x} \right)dx} } \right|\\ = \frac{8}{3} + \frac{5}{{12}} = \frac{{37}}{{12}}.\end{array}\)
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 4\) và các đường thẳng \(y = 0,\) \(x = - 1,\) \(x = 5\) bằng:
Xét phương trình hoành độ giao điểm: \({x^2} - 4 = 0 \Leftrightarrow x = \pm 2\).
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 4\) và các đường thẳng \(y = 0,\) \(x = - 1,\) \(x = 5\) là:
\(\begin{array}{l}S = \int\limits_{ - 1}^5 {\left| {{x^2} - 4} \right|dx} \\ = \left| {\int\limits_{ - 1}^2 {\left( {{x^2} - 4} \right)dx} } \right| + \left| {\int\limits_2^5 {\left( {{x^2} - 4} \right)dx} } \right|\\ = 9 + 27 = 36.\end{array}\)
Trong không gian Oxyz, cho bốn điểm \(A\left( {0;1; - 1} \right),\) \(B\left( {1;1;2} \right),\) \(C\left( {1; - 1;0} \right)\) và \(D\left( {0;0;1} \right)\). Mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng \(\left( {BCD} \right)\) và chia khối tứ diện ABCD thành hai khối đa diện sao cho tỉ số thể tích của khối đa diện có chứa điểm A và khối tứ diện ABCD bằng \(\frac{1}{{27}}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\).
Giả sử mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng \(\left( {BCD} \right)\) cắt AB, AC, AD lần lượt tại B’, C’, D’.
Đặt \(\frac{{AB'}}{{AB}} = k\). Áp dụng định lí Ta-lét ta tính được \(\frac{{AC'}}{{AC}} = \frac{{AD'}}{{AD}} = k\).
Khi đó ta có \(\frac{{{V_{AB'C'D'}}}}{{{V_{ABCD}}}} = \frac{{AB'}}{{AB}}.\frac{{AC'}}{{AC}}.\frac{{AD'}}{{AD}}\)\( \Leftrightarrow {k^3} = \frac{1}{{27}} \Leftrightarrow k = \frac{1}{3}.\)
\(\begin{array}{l} \Rightarrow AB' = \frac{1}{3}AB \Rightarrow \overrightarrow {AB'} = \frac{1}{3}\overrightarrow {AB} \\ \Rightarrow \left\{ \begin{array}{l}{x_{B'}} - 0 = \frac{1}{3}.1\\{y_{B'}} - 1 = \frac{1}{3}.0\\{z_{B'}} + 1 = \frac{1}{3}.3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{B'}} = \frac{1}{3}\\{y_{B'}} = 1\\{z_{B'}} = 0\end{array} \right.\\ \Rightarrow B'\left( {\frac{1}{3};1;0} \right)\end{array}\)
Mặt khác \(\left\{ \begin{array}{l}\overrightarrow {BC} = \left( {0; - 2; - 2} \right)\\\overrightarrow {BD} = \left( { - 1; - 1; - 1} \right)\end{array} \right.\)
\( \Rightarrow {\overrightarrow n _{\left( {BCD} \right)}} = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) \( = \left( {0;2; - 2} \right)\parallel \left( {0;1; - 1} \right)\)
Vì \(\left( \alpha \right)\parallel \left( {BCD} \right)\) nên \(\overrightarrow n \left( {0;1; - 1} \right)\) cũng là 1 VTPT của mặt phẳng \(\left( \alpha \right)\).
Vậy phương trình mặt phẳng \(\left( \alpha \right)\) là: \(0.\left( {x - \frac{1}{3}} \right) + 1.\left( {y - 1} \right) - 1.z = 0\) \( \Leftrightarrow y - z - 1 = 0\).
Trong không gian Oxyz, cho ba điểm \(A\left( {0;0;1} \right),\) \(B\left( {0;2;0} \right),\) \(C\left( {3;0;0} \right)\). Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính \(k = x + 2y + z.\)
Phương trình mặt phẳng (ABC) là: \(\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1\)\( \Leftrightarrow 2x + 3y + 6z - 6 = 0\)
Gọi \(H\left( {x;y;z} \right)\).
Vì H là trực tâm của tam giác ABC nên \(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\\H \in \left( {ABC} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\\H \in \left( {ABC} \right)\end{array} \right.\).
Ta có
\(\begin{array}{l}\overrightarrow {AH} = \left( {x;y;z - 1} \right);\,\,\overrightarrow {BH} = \left( {x;y - 2;z} \right)\\\overrightarrow {BC} = \left( {3; - 2;0} \right);\,\,\,\overrightarrow {AC} = \left( {3;0; - 1} \right)\end{array}\)
\( \Rightarrow \left\{ \begin{array}{l}3x - 2y = 0\\3x - z = 0\\2x + 3y + 6z - 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{{49}}\\y = \frac{{18}}{{49}}\\z = \frac{{36}}{{49}}\end{array} \right.\).
Vậy \(k = x + 2y + z = \frac{{12}}{7}.\)
Diện tích S của hình phẳng giới hạn bởi các đường \(y = {e^{2x}},\) \(y = 0,\) \(x = 0,\) \(x = 2\) được biểu diễn bởi \(\frac{{{e^a} - b}}{c}\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Tính \(P = a + 3b - c.\)
Diện tích hình phẳng giới hạn bởi các đường \(y = {e^{2x}},\) \(y = 0,\) \(x = 0,\) \(x = 2\) là
\(S = \int\limits_0^2 {\left| {{e^{2x}}} \right|dx} = \int\limits_0^2 {{e^{2x}}dx} \)\( = \left. {\frac{1}{2}{e^{2x}}} \right|_0^2 = \frac{{{e^4} - 1}}{2}\)
Khi dó \(a = 4;\,\,b = 1;\,\,c = 2.\)
Vậy \(P = a + 3b - c\) \( = 4 + 3.1 - 2 = 5.\)
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {\tan ^2}x\) biết phương trình \(F\left( x \right) = 0\) có một nghiệm bằng \(\frac{\pi }{4}.\)
Ta có \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = {\tan ^2}x\) nên
\(\begin{array}{l}F\left( x \right) = \int {{{\tan }^2}x} dx\\ \Rightarrow F\left( x \right) = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} \\ \Rightarrow F\left( x \right) = \tan x - x + C\end{array}\)
Mà \(F\left( {\frac{\pi }{4}} \right) = 0 \Rightarrow 1 - \frac{\pi }{4} + C = 0\)\( \Leftrightarrow C = \frac{\pi }{4} - 1.\)
Vậy \(F\left( x \right) = \tan x - x + \frac{\pi }{4} - 1.\)
Trong không gian Oxyz, viết phương trình đường thẳng \(\Delta \) đi qua hai điểm \(A\left( {1;4;4} \right)\) và \(B\left( { - 1;0;2} \right).\)
Ta có \(\overrightarrow {AB} = \left( { - 2; - 4; - 2} \right)\) là 1 VTCP của đường thẳng \(\Delta \) , suy ra \(\overrightarrow u \left( {1;2;1} \right)\) cũng là 1 VTCP của \(\Delta \).
Phương trình đường thẳng \(\Delta \) đi qua \(A\left( {1;4;4} \right)\) và có 1 VTCP \(\overrightarrow u \left( {1;2;1} \right)\) là: \(\frac{{x - 1}}{1} = \frac{{y - 4}}{2} = \frac{{z - 4}}{1}\).
Ta thấy \(M\left( {0;2;3} \right) \in \Delta \) , do đó phương trình \(\Delta \) cũng có dạng \(\frac{x}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}\).
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 1}}\). Đường thẳng đi qua điểm \(M\left( {2;1; - 1} \right)\) và song song với đường thẳng d có phương trình là:
Đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}\) có 1 VTCP là \(\overrightarrow u \left( { - 1;2; - 1} \right)\).
Do đó đường thẳng d’ song song với d có 1 VTCP là \(\overrightarrow {u'} \left( {1; - 2;1} \right)\).
Vậy phương trình đường thẳng d’ đi qua M(2;1;-1) và song song với d có phương trình là: \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{1}\).
Dễ thấy điểm \(A\left( {0;5; - 3} \right) \in d'\), do đó phương trình đường thẳng d’ có dạng \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}\).
Trong không gian Oxyz, tính diện tích S của tam giác ABC, biết \(A\left( {2;0;0} \right),\) \(B\left( {0;3;0} \right)\) và \(C\left( {0;0;4} \right)\)
Ta có \(\overrightarrow {AB} = \left( { - 2;3;0} \right);\,\,\overrightarrow {AC} = \left( { - 2;0;4} \right)\) \( \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {12;8;6} \right)\).
Vậy \({S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right]} \right|\)\( = \frac{1}{2}.\sqrt {{{12}^2} + {8^2} + {6^2}} = \sqrt {61} \)
Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số \(y = \sqrt x \cos \frac{x}{2},\,\,y = 0,\,\,x = \frac{\pi }{2},\,\,x = \pi \). Tính thể tích \(V\) của khối tròn xoay sinh ra khi cho hình phẳng \(\left( H \right)\) quay xung quanh trục Ox.
Xét phương trình hoành độ giao điểm: \(y = \sqrt x \cos \frac{x}{2} = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\\frac{x}{2} = \frac{\pi }{2} + k\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pi + k2\pi \end{array} \right.\)
Xét \(x \in \left[ {\frac{\pi }{2};\pi } \right] \Rightarrow x = \pi \)
\( \Rightarrow V = \pi \int\limits_{\frac{\pi }{2}}^\pi {x{{\cos }^2}\frac{x}{2}dx} \approx 1,775\).
Số phức liên hợp \(\overline z \) của số phức \(z = \frac{{4 + 6i}}{{1 - i}}\) là:
Ta có \(z = \frac{{4 + 6i}}{{1 - i}} = - 1 + 5i\)\( \Rightarrow \overline z = - 1 - 5i\)
Tính tích phân \(I = \int\limits_2^7 {\sqrt {x + 2} dx} .\)
\(\begin{array}{l}I = \int\limits_2^7 {\sqrt {x + 2} dx} \\ = \frac{2}{3}\left. {\left( {x + 2} \right)\sqrt {x + 2} } \right|_2^7 = \frac{{38}}{3}.\end{array}\)
Trong không gian Oxyz, cho hai đường thẳng \(\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\) và \(\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\). Gọi M là trung điểm đoạn vuông góc chung của hai đường thẳng trên. Tính độ dài đoạn thẳng OM.
Gọi \(A \in {d_1}:\frac{{x - 2}}{1} = \frac{{y - 4}}{1} = \frac{z}{{ - 2}}\)\( \Rightarrow A\left( {a + 2;a + 4; - 2a} \right)\)
\(B \in {d_2}:\frac{{x - 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 2}}{{ - 1}}\)\( \Rightarrow B\left( {2b + 3; - b - 1; - b - 2} \right)\)
Khi đó \(\overrightarrow {AB} = \left( {2b - a + 1; - b - a - 5; - b + 2a - 2} \right)\)
Mà \(\overrightarrow {AB} \bot \overrightarrow {{n_1}} = \left( {1;1; - 2} \right)\) và \(\overrightarrow {AB} \bot \overrightarrow {{n_2}} = \left( {2; - 1; - 1} \right)\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}2b - a + 1 - b - a - 5 -\\2\left( { - b + 2a - 2} \right) = 0\\2\left( {2b - a + 1} \right) + b + a + 5 + b\\ - 2a + 2 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 6a + 3b = 0\\ - 3a + 6b + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;2} \right)\\B\left( { - 1;1;0} \right)\end{array} \right.\end{array}\)
Vậy trung điểm M của AB là \(M\left( {0;2;1} \right) \Rightarrow OM = \sqrt 5 .\)
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\). Mệnh đề nào sau đây đúng?
Hình phẳng giới hạn bởi đồ thị hàm số \(y = - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\) có diện tích là:
\(S = \int\limits_0^4 {\left| { - {3^x}} \right|dx} = \int\limits_0^4 {{3^x}dx} \)