Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Võ Thị Sáu
Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Võ Thị Sáu
-
Hocon247
-
40 câu hỏi
-
60 phút
-
221 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Tìm \(I = \int {{x^2}\cos x\,dx} \).
Ta có: \(I = \int {{x^2}\cos x\,dx} = \int {{x^2}\,d\left( {\sin x} \right)} \)
Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = d\left( {\sin x} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2x\,dx\\v = \sin x\end{array} \right.\)
Khi đó ta có \(I = \int {{x^2}d\left( {\sin x} \right)} = \left( {{x^2}\sin x} \right) - 2\int {x\sin xdx} \)
\( = \left( {{x^2}\sin x} \right) + 2\left( {x\cos x} \right) - 2\int {\cos xdx} \)
\(= \left( {{x^2}\sin x} \right) + 2\left( {x\cos x} \right) - {\mathop{\rm s}\nolimits} inx + C\).
Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\sin x} \,\,(0 \le x \le \pi )\) là:
Thể tích vật thể tròn xoay sinh ra được xác định bằng công thức sau:
\(V = \pi \int\limits_0^\pi {\left( {x\sin x} \right)dx} = - \pi \int\limits_0^\pi {xd\left( {\cos x} \right)} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = d\left( {\cos x} \right)\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}du = dx\\v = \cos x\end{array} \right.\)
Khi đó
\(V = - \pi \left( {x\cos x} \right)\left| {_0^\pi } \right. + \pi \int\limits_0^\pi {\cos xdx} \)\(\,= - \pi \left( {x\cos x} \right)\left| {_0^\pi } \right. + \pi .\left( {\sin x} \right)\left| {_0^\pi } \right.\)\( = - \pi \left( { - \pi } \right) + 0 = {\pi ^2}\)
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\)?
Ta có: \(\int {\cos x.\sin x} \,dx = \int {\sin x\,d\left( {\sin x} \right)} \)\(\,= \dfrac{{{{\sin }^2}x}}{2} + C = \dfrac{{1 - \cos 2x}}{4} + C\)
Cho \(\int\limits_2^5 {f(x)\,dx = 10} \). Khi đó, \(\int\limits_5^2 {[2 - 4f(x)]\,dx} \) có giá trị là:
Ta có: \(\int\limits_5^2 {\left[ {2 - 4f(x)} \right]dx} \)
\(= - \int\limits_2^5 {2\,dx} + 4\int\limits_2^5 {f\left( x \right)} \,dx\)
\(= - \left( {2x} \right)\left| \begin{array}{l}_{}^5\\_2^{}\end{array} \right. + 4.10 \)
\(= - \left( {10 - 4} \right) + 40 = 34\)
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}\) là:
Ta có: \(\int {\dfrac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}} \,dx = \int {\dfrac{{{x^2} + 4x + 4}}{{{x^4}}}} \,dx\)
\(= \int {\left( {\dfrac{1}{{{x^2}}} + \dfrac{4}{{{x^3}}} + \dfrac{4}{{{x^4}}}} \right)} \,dx\)
\(= - \dfrac{1}{x} - \dfrac{2}{{{x^2}}} - \dfrac{4}{{3{x^2}}} + C\)
Hình phẳng S giới hạn bởi các đường y = x, y = 0, y= 4 – x . Hình này quay quanh trục Oy tạo nên vật thể có thể tích là Vy. Lựa chọc phương án đúng.
Phương trình hoành độ giao điểm \(x = 4 - x \Leftrightarrow 2x = 4 \Leftrightarrow x = 2.\)
Khi đó, thể tích hình phẳng được xác định là: \({V_y} = \pi \int\limits_0^2 {\left| {{x^2} - {{\left( {2 - x} \right)}^2}} \right|} \,dx = 16\pi .\)
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
Đặt \(t = \sqrt {a - x} \Rightarrow {t^2} = a - x \)
\(\Leftrightarrow x = a - {t^2} \Rightarrow dx = - 2t\,dt\)
Khi đó ta có: \(\int {x\sqrt {a - x} \,dx} = - 2\int {\left( {a - {t^2}} \right){t^2}dt\,} \)
\(= - 2\int {\left( {a{t^2} - {t^4}} \right)} \,dt\)\(\, = - 2\left( {\dfrac{{a{t^3}}}{3} - \dfrac{{{t^5}}}{5}} \right) + C \)
\(= \dfrac{2}{5}{t^5} - \dfrac{2}{3}a{t^3} + C \)
\(= \dfrac{2}{5}{\left( {a - x} \right)^{\dfrac{5}{2}}} - \dfrac{2}{3}a{\left( {a - x} \right)^{\dfrac{3}{2}}} + C\)
Cho miền (D) giới hạn bởi các đường sau: \(y = \sqrt x ,\,\,y = 2 - x,\,\,y = 0\). Diện tích của miền (D) có giá trị là:
Phương trình hoành độ giao điểm giữa các đường thẳng là\(\left\{ \begin{array}{l}2 - x = 0\\\sqrt x = 0\\\sqrt x = 2 - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\x = 2\\x = 1\end{array} \right.\)
Khi đó diện tích của miền \(\left( D \right)\) được xác định bởi:
\(S = \int\limits_0^1 {\left( {\sqrt x } \right)\,dx} + \int\limits_1^2 {\left( {2 - x} \right)\,dx} \)
\(\;\;\;= \left( {\dfrac{2}{3}{x^{\dfrac{3}{2}}}} \right)\left| \begin{array}{l}_{}^1\\_0^{}\end{array} \right. + \left( {2x - \dfrac{{{x^2}}}{2}} \right)\left| \begin{array}{l}^2\\_1\end{array} \right.\)
\(\;\;\;= \dfrac{2}{3} + 2 - \dfrac{3}{2} = \dfrac{7}{6}\)
Hàm số \(F(x) = \dfrac{1}{4}{\ln ^4}x + C\) là nguyên hàm của hàm số nào :
\(\int {\dfrac{{{{\ln }^3}x}}{x}\,dx} = \int {{{\ln }^3}x\,d\left( {\ln x} \right)} \)\(\,= \dfrac{1}{4}{\ln ^4}x + C\)
Tích phân \(\int\limits_0^e {\left( {3{x^2} - 7x + \dfrac{1}{{x + 1}}} \right)} \,dx\) có giá trị bằng:
Ta có: \(\int\limits_0^e {\left( {3{x^2} - 7x + \dfrac{1}{{x + 1}}} \right)} \,dx\)
\(= \left( {{x^3} - \dfrac{7}{2}{x^2} + \ln \left| {x + 1} \right|} \right)\left| \begin{array}{l}^e\\_0\end{array} \right. \)
\(= \left( {{e^3} - \dfrac{7}{2}{e^2} + \ln \left( {e + 1} \right)} \right)\)
Tích phân \(\int\limits_0^4 {\left( {3x - {e^{\dfrac{x}{2}}}} \right)dx = a + b{e^2}} \) khi đó a – 10b bằng:
Ta có: \(\int\limits_0^4 \left( {3x - {e^{\dfrac{x}{2}}}} \right)dx \)
\(= \left( {\dfrac{3}{2}{x^2}} \right) \left| \begin{array}{l}^4\\_0\end{array} \right. - 2\int\limits_0^4 {{e^{\dfrac{x}{2}}}\,d\left( {\dfrac{x}{2}} \right)} \)
\(= 24 - 2\left( {{e^{\dfrac{x}{2}}}} \right)\left| \begin{array}{l}^4\\_0^{}\end{array} \right. \)
\(= 24 - 2\left( {{e^2} - 1} \right) = 26 - 2{e^2}\)
Khi đó ta có: \(\left\{ \begin{array}{l}a = 26\\b = - 2\end{array} \right. \Rightarrow a - 10b = 26 + 20 = 46.\)
Cho hàm số y = f(x) liên tục trên đoạn [a ;b]. Diện tích hình phẳng giới hạn bởi đường cong y = f(x), trục hoành, các đường thẳng x = a, x = b là :
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đường cong \(y = f\left( x \right)\), trục hoành, các đường thẳng \(x = a,x = b\) là: \(\int\limits_a^b {\left| {f(a)} \right|\,dx} \)
Cho \(\int\limits_{ - 2}^1 {f(x)\,dx = 1,\,\,\int\limits_{ - 2}^1 {g(x)\,dx = - 2} } \). Tính \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\).
Ta có: \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx \)
\(= \left( x \right)\left| {_{ - 2}^1} \right. - \int\limits_{ - 2}^1 {f\left( x \right)} \,dx + 3\int\limits_{ - 2}^1 {g\left( x \right)} \,dx \)
\(= 3 - 1 + 3.\left( { - 2} \right) = - 4\)
Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
Áp dụng định nghĩa và tính chất của tích phân ta có:
+ \(\int\limits_a^b {k.dx = k\int\limits_a^b {dx} = k.\left( x \right)\left| {_a^b} \right. = k\left( {b - a} \right),\,\forall k \in R} \)
+ \(\int\limits_a^b {f(x)\,dx = - \int\limits_b^a {f(x)\,dx} } \)
+ \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx + \int\limits_c^b {f(x)\,dx\,,\,\,\,c \in [a;b]} } } \)
Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
Đặt \(t = \cos x\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = \dfrac{\pi }{3} \to t = \dfrac{1}{2}\end{array} \right.\)
Khi đó ta có: \(\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \)
\(= \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{2\sin x.\cos x}}{{1 + \cos x}}\,dx} \)
\(= - 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\cos x}}{{1 + \cos x}}} \,d\left( {\cos x} \right)\)
\( = - 2\int\limits_1^{\dfrac{1}{2}} {\dfrac{t}{{1 + t}}\,dt} \)
\(= \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{t + 1}}\,dt} \)
Tìm hai số thực A, B sao cho \(f(x) = A\sin \pi x + B\), biết rằng f’(1) = 2 và \(\int\limits_0^2 {f(x)\,dx = 4} \).
Ta có \(\int\limits_0^2 {\left( {A\sin \pi x + B} \right)\,dx = 4} \)
\(\Leftrightarrow \dfrac{1}{\pi }\int\limits_0^2 {A\sin \pi x\,d\left( {\pi x} \right)} + B\int\limits_0^2 {dx} = 4\)
\(\Leftrightarrow \dfrac{A}{\pi }\left( { - \cos \pi x} \right)\left| {_0^2} \right. + B\left( x \right)\left| {_0^2} \right. = 4 \)
\( \Leftrightarrow \dfrac{A}{\pi }\left( { - 1 - \left( { - 1} \right)} \right) + B\left( {2 - 0} \right) = 4\)
\(\Leftrightarrow B = 2\)
Khi đó \(f(x) = A\sin \pi x + 2\)\(\, \Rightarrow f'\left( x \right) = A\pi \cos \pi x\)
Theo giả thiết ta có: \(f'\left( 1 \right) = 2 \Rightarrow A\pi .\left( { - 1} \right) = 2\)\(\, \Rightarrow A = - \dfrac{2}{\pi }.\)
Tính tích phân \(I = \int\limits_1^e {x\ln x\,dx} \).
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)
Khi đó ta có: \(I = \int\limits_1^e {x\ln x\,dx} \)
\(= \left( {\dfrac{{{x^2}}}{2}\ln x} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. - \int\limits_1^e {\dfrac{x}{2}} \,dx \)
\(= \dfrac{{{e^2}}}{2} - \left( {\dfrac{{{x^2}}}{4}} \right)\left| \begin{array}{l}^e\\_1\end{array} \right. \)
\(= \dfrac{{{e^2}}}{2} - \left( {\dfrac{{{e^2}}}{4} - \dfrac{1}{4}} \right) = I = \dfrac{{{e^2} + 1}}{4}\)
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Ta có: \(\int {\left( {4\cos x + \dfrac{1}{{{x^2}}}} \right)} \,dx \)\(\,= 4\sin x - \dfrac{1}{x} + C\)
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \dfrac{1}{x}\), trục hoành, đường thẳng x= - 1 và đường thẳng x = - 2 là:
Diện tích hình phằng giới hạn trên được xác định bằng công thức
\(S = \int\limits_{ - 2}^{ - 1} {\left| {x + \dfrac{1}{x}} \right|} \,dx = \left| {\dfrac{{{x^2}}}{2} + \ln \left| x \right|} \right|\left| \begin{array}{l}^{ - 1}\\_{ - 2}\end{array} \right. \)
\(\;\;\;= \left| {\left| {\dfrac{1}{2} + \ln 1} \right| - \left| {2 + \ln 2} \right|} \right| \)
\(\,\,\,\,= \left| {\dfrac{1}{2} - 2 - \ln 2} \right| = \dfrac{3}{2} + \ln 2\)
Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} } \,dx\). Đặt u = 8 + cosx thì kết quả nào sau đây đúng ?
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to u = 9\\x = \dfrac{\pi }{2} \to u = 8\end{array} \right.\)
Khi đó ta có: \(I = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\sqrt {8 + \cos x} } \,dx \)
\(= - \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {8 + \cos x} } \,d\left( {\cos x + 8} \right)\)
\(= - \int\limits_0^{\dfrac{\pi }{2}} {\sqrt u } \,d\left( u \right)\)
\( = - \int\limits_9^8 {\sqrt u } du = \int\limits_8^9 {\sqrt u } \,du\)
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Ta có: \(\int {\dfrac{1}{{x - 1}}\,dx} = \int {\dfrac{1}{{x - 1}}\,d\left( {x - 1} \right)}\)\(\, = \ln \left| {x - 1} \right| + C\)
Theo giả thiết: \(F\left( 2 \right) = 1 \Rightarrow \ln 1 + C = 1 \Leftrightarrow C = 1\)
Khi đó \(F\left( 3 \right) = \ln 2 + 1.\)
Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
Thể tích vật thể tròn xoay sinh bởi \(\left( H \right)\)quay quanh trục Ox được xác định bằng công thức
\(V = \pi \int\limits_0^\pi {{{\sin }^2}x} \,dx\)
Tính tích phân \(I = \int\limits_0^1 {\dfrac{2}{{\sqrt {4 - {x^2}} }}\,dx} \) bằng cách đặt x = 2sint. Mệnh đề nào dưới đây đúng ?
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to t = 0\\x = 1 \to t = \dfrac{\pi }{6}\end{array} \right.\)
Khi đó ta có:
\(\begin{array}{l}I = \int\limits_0^1 {\dfrac{2}{{\sqrt {4 - {x^2}} }}\,dx} \\= \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{4}{{\sqrt {4 - 4{{\sin }^2}t} }}\,d\left( {\sin t} \right) }\\= \int\limits_0^{\dfrac{\pi }{6}} {\dfrac{2}{{\cos t}}} .\cos t\,dt = I = 2\int\limits_0^{\dfrac{\pi }{6}} {dt} \\\end{array}\)
Tích phân \(I = \int\limits_1^e {\dfrac{{\sqrt {8\ln x + 1} }}{x}\,dx} \) bằng:
Ta có:
\(I = \int\limits_1^e {\dfrac{{\sqrt {8\ln x + 1} }}{x}\,dx} \)
\(= \dfrac{1}{8}\int\limits_1^e {\sqrt {8\ln x + 1} \,d\left( {8\ln x + 1} \right)}\)
\( = \dfrac{1}{8}.\dfrac{2}{3}{\left( {8\ln x + 1} \right)^{\dfrac{3}{2}}}\left| \begin{array}{l}^e\\_1\end{array} \right.\)
\( = \dfrac{1}{{12}}\left( {{9^{\dfrac{3}{2}}} - 1} \right) = \dfrac{{13}}{6}\)
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).
Ta có: \(\int {\dfrac{1}{{6x - 2}}\,dx} = \dfrac{1}{6}\int \dfrac{1}{{6x - 2}}\,d\left( {6x - 2} \right) \)\(\,= \dfrac{1}{6}\ln \left| {6x - 2} \right| + C \)
Điểm \(M\left( {x;y;z} \right)\) nếu và chỉ nếu:
Điểm \(M\left( {x;y;z} \right) \Leftrightarrow \overrightarrow {OM} = x.\overrightarrow i + y.\overrightarrow j + z.\overrightarrow k \)
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
\(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \Rightarrow M\left( {1; - 3;1} \right)\).
Tung độ của điểm \(M\) thỏa mãn \(\overrightarrow {OM} = 2\overrightarrow j - \overrightarrow i + \overrightarrow k \) là:
\(\overrightarrow {OM} = 2\overrightarrow j - \overrightarrow i + \overrightarrow k \)\(\,= - \overrightarrow i + 2\overrightarrow j + \overrightarrow k \)
\(\Rightarrow M\left( { - 1;2;1} \right)\).
Do đó tung độ của \(M\) bằng \(2\).
Điểm \(N\) là hình chiếu của \(M\left( {x;y;z} \right)\) trên trục tọa độ \(Oz\) thì:
Chiếu \(M\) lên trục \(Oz\)thì \(x = 0;y = 0\) và giữ nguyên \(z\) nên \(N\left( {0;0;z} \right)\).
Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).
Điểm \(G\) là trọng tâm tam giác \(ABC\) nếu:
\(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\)
\(\Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.4 - 0 - \left( { - 1} \right) = 13\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.\left( { - 1} \right) - 2 - 3 = - 8\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.3 - \left( { - 1} \right) - 2 = 8\end{array} \right. \)
\(\Rightarrow C\left( {13; - 8;8} \right)\)
Cho tứ diện \(ABCD\) có \(A\left( {1;0;0} \right),B\left( {0;1;1} \right),C\left( { - 1;2;0} \right),\)\(\,D\left( {0;0;3} \right)\). Tọa độ trọng tâm tứ diện \(G\) là:
Điểm \(G\) là trọng tâm tứ diện \(ABCD\) nếu tọa độ điểm \(G\) thỏa mãn:
\(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4} = \dfrac{{1 + 0 - 1 + 0}}{4} = 0\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4} = \dfrac{{0 + 1 + 2 + 0}}{4} = \dfrac{3}{4}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4} = \dfrac{{0 + 1 + 0 + 3}}{4} = 1\end{array} \right. \)
\(\Rightarrow G\left( {0;\dfrac{3}{4};1} \right)\)
Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
Ta có: \(d//\left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow n \\M \in d,M \notin \left( P \right)\end{array} \right.\)
Do đó nếu \(d//\left( P \right)\) thì \(\overrightarrow u \bot \overrightarrow n \Leftrightarrow \overrightarrow u .\overrightarrow n = 0\).
Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(\overrightarrow u \bot \overrightarrow n \) và một điểm thuộc \(d\) cũng thuộc \(\left( P \right)\) thì:
Ta có: \(d \subset \left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow n \\M \in d,M \in \left( P \right)\end{array} \right.\).
Do đó nếu \(\overrightarrow u \bot \overrightarrow n \) thì \(d//\left( P \right)\) hoặc \(d \subset \left( P \right)\). Ngoài ra nếu \(M \in d\) và \(M \in \left( P \right)\) thì \(d \subset \left( P \right)\).
Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\) và mặt phẳng \(\left( P \right):x + y - z - 3 = 0\). Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:
\(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\)
\(\Rightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 - 2t\\z = 3t\end{array} \right.\)
\(\Rightarrow M\left( {1 + 2t; - 1 - 2t;3t} \right)\)
\(M = d \cap \left( P \right) \)
\(\Rightarrow 1 + 2t - 1 - 2t - 3t - 3 = 0\)
\(\Leftrightarrow - 3t - 3 = 0 \)
\(\Leftrightarrow t = - 1\)
\(\Rightarrow M\left( { - 1;1; - 3} \right)\)
Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:
\(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)thì:
Ta có:
Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \) thì \(\overrightarrow u \) cùng phương \(\overrightarrow {u'} \) nên \(d//d'\) hoặc \(d \equiv d'\).
Điều kiện cần và đủ để hai đường thẳng cắt nhau là:
\(d\) cắt \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \) không cùng phương và \(\overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\) thì:
Ta có: \(d\) chéo \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) không đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\).
Khi xét hệ phương trình giao hai đường thẳng, nếu hệ có nghiệm duy nhất thì:
Nếu hệ phương trình giao điểm hai đường thẳng có nghiệm duy nhất thì hai đường thẳng cắt nhau.
Khi xét hệ phương trình giao điểm hai đường thẳng, nếu hệ vô nghiệm và hai véc tơ \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng:
Nếu hệ phương trình giao điểm hai đường thẳng vô nghiệm thì \(d\) và \(d'\) không có điểm chung thì hoặc song song hặc chéo nhau.
Hơn nữa \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng song song.