Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm \(x = 4 - x \Leftrightarrow 2x = 4 \Leftrightarrow x = 2.\)
Khi đó, thể tích hình phẳng được xác định là: \({V_y} = \pi \int\limits_0^2 {\left| {{x^2} - {{\left( {2 - x} \right)}^2}} \right|} \,dx = 16\pi .\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
Tìm hai số thực A, B sao cho \(f(x) = A\sin \pi x + B\), biết rằng f’(1) = 2 và \(\int\limits_0^2 {f(x)\,dx = 4} \).
Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\)?
Tích phân \(\int\limits_0^e {\left( {3{x^2} - 7x + \dfrac{1}{{x + 1}}} \right)} \,dx\) có giá trị bằng:
Cho \(\int\limits_{ - 2}^1 {f(x)\,dx = 1,\,\,\int\limits_{ - 2}^1 {g(x)\,dx = - 2} } \). Tính \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\).
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}\) là:
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Tích phân \(\int\limits_0^4 {\left( {3x - {e^{\dfrac{x}{2}}}} \right)dx = a + b{e^2}} \) khi đó a – 10b bằng:
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :