Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
A. \(I = \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
B. \(I = \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
C. \(I = - \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{1 + 1}}\,dt} \).
D. \(I = - \int\limits_{\dfrac{0}{2}}^{\dfrac{x}{4}} {\dfrac{{2t}}{{1 + 1}}\,dt} \).
Lời giải của giáo viên
ToanVN.com
Đặt \(t = \cos x\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = \dfrac{\pi }{3} \to t = \dfrac{1}{2}\end{array} \right.\)
Khi đó ta có: \(\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \)
\(= \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{2\sin x.\cos x}}{{1 + \cos x}}\,dx} \)
\(= - 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\cos x}}{{1 + \cos x}}} \,d\left( {\cos x} \right)\)
\( = - 2\int\limits_1^{\dfrac{1}{2}} {\dfrac{t}{{1 + t}}\,dt} \)
\(= \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{t + 1}}\,dt} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
Tìm hai số thực A, B sao cho \(f(x) = A\sin \pi x + B\), biết rằng f’(1) = 2 và \(\int\limits_0^2 {f(x)\,dx = 4} \).
Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\)?
Cho \(\int\limits_{ - 2}^1 {f(x)\,dx = 1,\,\,\int\limits_{ - 2}^1 {g(x)\,dx = - 2} } \). Tính \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\).
Tích phân \(\int\limits_0^e {\left( {3{x^2} - 7x + \dfrac{1}{{x + 1}}} \right)} \,dx\) có giá trị bằng:
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}\) là:
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Tích phân \(\int\limits_0^4 {\left( {3x - {e^{\dfrac{x}{2}}}} \right)dx = a + b{e^2}} \) khi đó a – 10b bằng:
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).
Tính tích phân \(I = \int\limits_0^1 {\dfrac{2}{{\sqrt {4 - {x^2}} }}\,dx} \) bằng cách đặt x = 2sint. Mệnh đề nào dưới đây đúng ?
Hình phẳng S giới hạn bởi các đường y = x, y = 0, y= 4 – x . Hình này quay quanh trục Oy tạo nên vật thể có thể tích là Vy. Lựa chọc phương án đúng.