Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).
A. \(C\left( { - 1;3;2} \right)\)
B. \(C\left( {11; - 2;10} \right)\)
C. \(C\left( {5; - 6;2} \right)\)
D. \(C\left( {13; - 8;8} \right)\)
Lời giải của giáo viên
ToanVN.com
Điểm \(G\) là trọng tâm tam giác \(ABC\) nếu:
\(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\)
\(\Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.4 - 0 - \left( { - 1} \right) = 13\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.\left( { - 1} \right) - 2 - 3 = - 8\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.3 - \left( { - 1} \right) - 2 = 8\end{array} \right. \)
\(\Rightarrow C\left( {13; - 8;8} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
Tìm hai số thực A, B sao cho \(f(x) = A\sin \pi x + B\), biết rằng f’(1) = 2 và \(\int\limits_0^2 {f(x)\,dx = 4} \).
Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
Cho hàm số f(x) liên tục trên đoạn [a ; b]. Hãy chọn mệnh đề sai.
Cho \(\int\limits_{ - 2}^1 {f(x)\,dx = 1,\,\,\int\limits_{ - 2}^1 {g(x)\,dx = - 2} } \). Tính \(\int\limits_{ - 2}^1 {\left( {1 - f(x) + 3g(x)} \right)} \,dx\).
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\)?
Tích phân \(\int\limits_0^e {\left( {3{x^2} - 7x + \dfrac{1}{{x + 1}}} \right)} \,dx\) có giá trị bằng:
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
Điểm \(M\) thỏa mãn \(\overrightarrow {OM} = \overrightarrow i - 3\overrightarrow j + \overrightarrow k \) có tọa độ:
Biết F(x) là nguyên hàm của \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Khi đó F(3) bằng :
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}\) là:
Tích phân \(\int\limits_0^4 {\left( {3x - {e^{\dfrac{x}{2}}}} \right)dx = a + b{e^2}} \) khi đó a – 10b bằng:
Hình phẳng S giới hạn bởi các đường y = x, y = 0, y= 4 – x . Hình này quay quanh trục Oy tạo nên vật thể có thể tích là Vy. Lựa chọc phương án đúng.
Tìm họ các nguyên hàm của hàm số \(f(x) = \dfrac{1}{{6x - 2}}\).