Lời giải của giáo viên
ToanVN.com
Ta có
\(\begin{array}{l}I = \int\limits_1^3 {\frac{{2x - 3}}{{x + 1}}dx} = \int\limits_1^3 {\frac{{2x + 2 - 5}}{{x + 1}}dx} \\I = \int\limits_1^3 {\left( {2 - \frac{5}{{x + 1}}} \right)dx} \\ = \left. {\left( {2x - 5\ln \left| {x + 1} \right|} \right)} \right|_1^3\\I = 6 - 5\ln 4 - 2 + 5\ln 2\\ = 4 - 5\ln {2^2} + 5\ln 2\\I = 4 - 10\ln 2 + 5\ln 2\\ = 4 - 5\ln 2\end{array}\)
Khi đó \(a = 4;\,\,b = - 5\,\,\left( {tm} \right).\)
Vậy \({b^2} - 2a = {\left( { - 5} \right)^2} - 2.4 = 17.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình phẳng \(\left( H \right)\) được giới hạn bởi các đường \(x = 0,\) \(x = \pi ,\) \(y = 0\) và \(y = - \cos x\). Thể tích V của khối tròn xoay tạo thành khi quay \(\left( H \right)\) xung quanh trục Ox được tính theo công thức:
Số phức \(z = \frac{{5 + 15i}}{{3 + 4i}}\) có phần thực là
Nghiệm phức có phần ảo dương của phương trình \({z^2} - 2z + 5 = 0\) là:
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z + 1}}{{ - 1}}\). Đường thẳng đi qua điểm \(M\left( {2;1; - 1} \right)\) và song song với đường thẳng d có phương trình là:
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 4\) và các đường thẳng \(y = 0,\) \(x = - 1,\) \(x = 5\) bằng:
Trong không gian Oxyz, cho điểm \(A\left( {2;3;5} \right)\). Tìm tọa độ điểm A’ là hình chiếu vuông góc của A lên trục Oy.
Họ nguyên hàm của hàm số \(f\left( x \right) = 3{x^2} - 2x + 3\) là:
Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\).
Phần thực của số phức \(\left( {2 - i} \right)\left( {1 + 2i} \right)\) là:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).
Cho tích phân \(I = \int\limits_1^e {\frac{{2\ln x + 3}}{x}dx} \). Nếu đặt \(t = \ln x\) thì:
Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx = - \frac{a}{b} + \frac{\pi }{c}} \) với \(a,\,\,b,\,\,c \in \mathbb{N}\), phân số \(\frac{a}{b}\) tối giản. Tính \(T = a + b + c.\)
Tính môđun \(\left| z \right|\) của số phức \(z = \left( {2 + i} \right){\left( {1 + i} \right)^2} + 1\).
Trong không gian Oxyz, một vecto pháp tuyến của mặt phẳng \(\frac{x}{{ - 5}} + \frac{y}{1} + \frac{z}{{ - 2}} = 1\) là:
Trong không gian Oxyz, viết phương trình đường thẳng đi qua điểm \(A\left( {1;2;3} \right)\) và có vecto chỉ phương \(\overrightarrow u = \left( {2; - 1; - 2} \right).\)