Lời giải của giáo viên
ToanVN.com
TXĐ: \(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}y = {x^3} - {x^2} - x + 2\\ \Rightarrow y' = 3{x^2} - 2x - 1 = \left( {3x + 1} \right)\left( {x - 1} \right)\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{1}{3}\\x = 1\end{array} \right.\end{array}\)
BBT của hàm số đã cho như sau:
.png)
Từ BBT ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - \dfrac{1}{3};1} \right)\) và đồng biến trên các khoảng \(\left( { - \infty ; - \dfrac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\).
Đáp án C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a,\,\,m\) là 2 số thực thỏa mãn \(0 < a \ne 1\) và \({\log _a}2 = m\). Giá trị của biểu thức \({a^m} + {a^{ - m}}\) bằng
Cho hai số thực dương \(x\) và \(y\) thỏa mãn \({\log _3}x + {\log _3}y = - 1\). Khẳng định nào dưới đây đúng?
Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\)
.png)
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(BC = a\sqrt 2 \). Hình chiếu vuông góc \(H\) của \(S\) lên mặt phẳng đáy là trung điểm của đoạn thẳng \(BC\) và \(SA = \dfrac{{\sqrt 3 a}}{2}\)(tham khảo hình bên). Tính thể tích \(V\) của khối chóp đã cho.
.png)
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?
.png)
Tính thể tích \(V\) của khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB = 2a,\,\,AC = a\sqrt 2 \) và \(AC' = a\sqrt 3 \) (tham khảo hình bên).
.png)
Tính thể tích \(V\) của khối lăng trụ có chiều cao \(h = 3\,\,cm\) và diện tích đáy \(B = 10\,\,c{m^2}\)
Chiều cao \(h\) của khối chóp có diện tích đáy \(B\) và thể tích \(V\) được tính theo công thức nào dưới đây?
Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), mặt bên hợp với mặt đáy một góc bằng \(45^\circ \) (tham khảo hình bên). Tính thể tích \(V\) của khối cầu ngoại tiếp hình chóp đã cho.
.png)
Tính tổng các nghiệm của phương trình \(\ln \left( {{x^2} - 3x} \right) = 0\)
Cho hàm số \(y = a{x^4} + b{x^2} + c\) (với \(a,\,b,\,c \in \mathbb{R}\)) có đồ thị như hình bên. Số điểm cực đại của đồ thị hàm số là:
.png)
Số nghiệm của phương trình \({2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\) là
Cho hình trụ có chiều cao \(h = a\) và bán kính đáy \(r = 2a\). Tính diện tích toàn phần của hình trụ.
Cho hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {3{m^2} + 2m} \right)x + 1\) (với \(m\) là tham số). Gọi \(\left[ {a;b} \right]\) là tập hợp tất cả các giá trị của \(m\) để hàm số đã cho đồng biến trên khoảng \(\left( {4; + \infty } \right)\). Tính giá trị của biểu thức \(T = a + 3b\)
.png)