Cho tứ diện đều \(ABCD\). Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của các cạnh \(DC,\,\,DA,\,\,DB\) (tham khảo hình bên). Mặt phẳng nào dưới đây là một mặt phẳng đối xứng của tứ diện đã cho?
.png)
A. \(\left( {ABM} \right)\)
B. \(\left( {BMN} \right)\)
C. \(\left( {AMP} \right)\)
D. \(\left( {MNP} \right)\)
Lời giải của giáo viên
ToanVN.com
.png)
Mặt phẳng \(\left( \alpha \right)\) được gọi là mặt phẳng đối xứng của
tứ diện nếu lấy đối xứng tất cả các điểm của tứ diện
qua mặt phẳng \(\left( \alpha \right)\) ta vẫn được tứ diện ban đầu.
Hình tứ diện đều có các mặt phẳng đối xứng là các
mặt phẳng đi qua 1 đỉnh của tứ diện và một trung tuyến của tam giác đối diên.
Hình tứ diện đều \(ABCD\) có các mặt phẳng đối xứng là : \(\left( {ABM} \right),\,\,\left( {ACP} \right),\,\,\left( {BCN} \right)\)
Đáp án A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f'\left( x \right)\) liên tục và có đồ thị trên \(\mathbb{R}\) như hình bên. Hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực tiểu?
.png)
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(BC = a\sqrt 2 \). Hình chiếu vuông góc \(H\) của \(S\) lên mặt phẳng đáy là trung điểm của đoạn thẳng \(BC\) và \(SA = \dfrac{{\sqrt 3 a}}{2}\)(tham khảo hình bên). Tính thể tích \(V\) của khối chóp đã cho.
.png)
Cho \(a,\,\,m\) là 2 số thực thỏa mãn \(0 < a \ne 1\) và \({\log _a}2 = m\). Giá trị của biểu thức \({a^m} + {a^{ - m}}\) bằng
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?
.png)
Cho hai số thực dương \(x\) và \(y\) thỏa mãn \({\log _3}x + {\log _3}y = - 1\). Khẳng định nào dưới đây đúng?
Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\)
.png)
Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), mặt bên hợp với mặt đáy một góc bằng \(45^\circ \) (tham khảo hình bên). Tính thể tích \(V\) của khối cầu ngoại tiếp hình chóp đã cho.
.png)
Tính thể tích \(V\) của khối lăng trụ có chiều cao \(h = 3\,\,cm\) và diện tích đáy \(B = 10\,\,c{m^2}\)
Tính thể tích \(V\) của khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB = 2a,\,\,AC = a\sqrt 2 \) và \(AC' = a\sqrt 3 \) (tham khảo hình bên).
.png)
Chiều cao \(h\) của khối chóp có diện tích đáy \(B\) và thể tích \(V\) được tính theo công thức nào dưới đây?
Tính tổng các nghiệm của phương trình \(\ln \left( {{x^2} - 3x} \right) = 0\)
Một người dự định làm một cái thùng hình trụ bằng tôn có nắp đậy và có thể tích \(V\) cho trước. Hỏi người đó phải làm cái thùng có tỉ lệ giữa chiều cao và bán kính đáy bằng bao nhiêu để tốn ít tôn nhất ?
Diện tích xung quanh \({S_{xq}}\) của một hình nón có bán kính đáy \(R\) và độ dài đường sinh \(l\) được xác định bởi công thức nào dưới đây?
.png)