Câu hỏi Đáp án 3 năm trước 48

Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\). Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để đường thẳng \(d:\,\,y = mx + m + 1\) cắt \(\left( C \right)\) tại 2 điểm \(A,\,B\) sao cho độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \). Tích các phần tử của \(S\) là 

A. \(2\)      

B.

Đáp án chính xác ✅

C. \( - 2\)  

D.  \( - 1\) 

Lời giải của giáo viên

verified ToanVN.com

TXĐ:   \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

Phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị hàm số \(\left( C \right)\) là:

\(\begin{array}{l}\dfrac{{x - 1}}{{x + 1}} = mx + m + 1\\ \Leftrightarrow \left( {x - 1} \right) = \left( {mx + m + 1} \right)\left( {x + 1} \right)\\ \Leftrightarrow m{x^2} + mx + mx + m + x + 1 = x - 1\\ \Leftrightarrow m{x^2} + 2mx + m + 2 = 0\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác \( - 1\)

Suy ra   \(\left\{ \begin{array}{l}\Delta ' > 0\\m.{\left( { - 1} \right)^2} + 2m.\left( { - 1} \right) + m + 2 \ne 0\end{array} \right. \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - m\left( {m + 2} \right) > 0 \Leftrightarrow m < 0\)

Với \(m < 0,\) phương trình (1) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - 2m}}{m}\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right.\)

Suy ra, đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt \(A\left( {{x_1};m{x_1} + m + 1} \right);\,\,\,\,B\left( {{x_2};m{x_2} + m + 1} \right)\)

Ta có:

 \(\begin{array}{l}AB = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left[ {\left( {m{x_1} + m + 1} \right) - \left( {m{x_2} + m + 1} \right)} \right]}^2}}  = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {m^2}{{\left( {{x_1} - {x_2}} \right)}^2}}  = 2\sqrt 5 \end{array}\)

\(\begin{array}{l} \Leftrightarrow \left( {{m^2} + 1} \right){\left( {{x_1} - {x_2}} \right)^2} = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( { - 2} \right)}^2} - 4.\dfrac{{m + 2}}{m}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\dfrac{{ - 8}}{m} = 20\end{array}\)

\(\begin{array}{l} \Leftrightarrow  - 8{m^2} - 8 = 20m\\ \Leftrightarrow \left[ \begin{array}{l}m =  - \dfrac{1}{2}\\m =  - 2\end{array} \right.\,\,\,\,\left( {t/m} \right)\end{array}\)

Vậy tích các giá trị của \(m\) thỏa mãn là      \(S = \left( { - \dfrac{1}{2}} \right).\left( { - 2} \right) = 1\)

Đáp án  B

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \(a,\,\,m\) là 2 số thực thỏa mãn \(0 < a \ne 1\) và \({\log _a}2 = m\). Giá trị của biểu thức \({a^m} + {a^{ - m}}\) bằng

Xem lời giải » 3 năm trước 63
Câu 2: Trắc nghiệm

Cho hai số thực dương \(x\) và \(y\) thỏa mãn \({\log _3}x + {\log _3}y =  - 1\). Khẳng định nào dưới đây đúng?

Xem lời giải » 3 năm trước 62
Câu 3: Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?

Xem lời giải » 3 năm trước 61
Câu 4: Trắc nghiệm

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(BC = a\sqrt 2 \). Hình chiếu vuông góc \(H\) của \(S\) lên mặt phẳng đáy là trung điểm của đoạn thẳng \(BC\) và \(SA = \dfrac{{\sqrt 3 a}}{2}\)(tham khảo hình bên). Tính thể tích \(V\) của khối chóp đã cho.

Xem lời giải » 3 năm trước 61
Câu 5: Trắc nghiệm

Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\)

Xem lời giải » 3 năm trước 61
Câu 6: Trắc nghiệm

Đa diện ở hình bên có bao nhiêu đỉnh?

Xem lời giải » 3 năm trước 60
Câu 7: Trắc nghiệm

Tính thể tích \(V\) của khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB = 2a,\,\,AC = a\sqrt 2 \) và \(AC' = a\sqrt 3 \) (tham khảo hình bên).

Xem lời giải » 3 năm trước 58
Câu 8: Trắc nghiệm

Tính thể tích \(V\) của khối lăng trụ có chiều cao \(h = 3\,\,cm\) và diện tích đáy \(B = 10\,\,c{m^2}\) 

Xem lời giải » 3 năm trước 57
Câu 9: Trắc nghiệm

Tính tổng các nghiệm của phương trình \(\ln \left( {{x^2} - 3x} \right) = 0\)

Xem lời giải » 3 năm trước 57
Câu 10: Trắc nghiệm

Chiều cao \(h\) của khối chóp có diện tích đáy \(B\) và thể tích \(V\) được tính theo công thức nào dưới đây?

Xem lời giải » 3 năm trước 57
Câu 11: Trắc nghiệm

Cho hàm số \(y = \dfrac{{mx - 1}}{{2x + 1}}\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max }\limits_{\left[ {1;2} \right]} y = 3\). Khẳng định nào dưới đây đúng?

Xem lời giải » 3 năm trước 56
Câu 12: Trắc nghiệm

Hàm số \(y = {x^3} - {x^2} - x + 2\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 56
Câu 13: Trắc nghiệm

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), mặt bên hợp với mặt đáy một góc bằng \(45^\circ \) (tham khảo hình bên). Tính thể tích \(V\) của khối cầu ngoại tiếp hình chóp đã cho.

Xem lời giải » 3 năm trước 56
Câu 14: Trắc nghiệm

Số nghiệm của phương trình \({2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\) là

Xem lời giải » 3 năm trước 56
Câu 15: Trắc nghiệm

Cho hình trụ có chiều cao \(h = a\) và bán kính đáy \(r = 2a\). Tính diện tích toàn phần của hình trụ.

Xem lời giải » 3 năm trước 55

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »