Gọi \({m_0}\) là giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 2\) có ba điểm cực trị \(A,\,B,\,C\) tạo thành một tam giác sao cho trục \(Ox\) chia tam giác đó thành \(2\) phần có diện tích lần lượt bằng \({S_1},\,\,{S_2}\) và \(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{1}{3}\), trong đó \({S_2}\) là diện tích của phần nằm dưới \(Ox\). Khẳng định nào dưới đây đúng?
A. \({m_0} \in \left( { - 3;1} \right)\)
B. \({m_0} \in \left( { - 6; - 3} \right)\)
C. \({m_0} \in \left( {1;4} \right)\)
D. \({m_0} \in \left( { - 9; - 6} \right)\)
Lời giải của giáo viên
ToanVN.com
TXĐ: \(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}y = {x^4} + 2m{x^2} + 2\\ \Rightarrow y' = 4{x^3} + 4mx = 4x\left( {{x^2} + m} \right)\\y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - m\end{array} \right.\end{array}\)
Để hàm số đã cho có 3 điểm cực trị thì phương trình \({x^2} = - m\) có 2 nghiệm phân biệt khác 0. Suy ra \(m < 0\)
Khi đó, 3 điểm cực trị của đồ thị hàm số là \(A\left( {0;2} \right);\,\,\,B\left( {\sqrt { - m} ; - {m^2} + 2} \right);\,\,\,C\left( { - \sqrt { - m} ; - {m^2} + 2} \right)\).
Phương trình đường thẳng \(BC\) là \(y = - {m^2} + 2\)
Gọi giao\(AB\) và \(AC\) với trục \(Ox\) lần lượt là \(M,\,\,N\). Suy ra \({S_1} = {S_{\Delta AMN}}\)
Ta có:
\(\dfrac{{{S_1}}}{{{S_2}}} = \dfrac{1}{3} \Leftrightarrow \dfrac{{{S_{AMN}}}}{{{S_{MNBC}}}} = \dfrac{1}{3} \Rightarrow \dfrac{{{S_{AMN}}}}{{{S_{ABC}}}} = \dfrac{1}{4}\)
Ta thấy \(Ox//BC\) hay \(MN//BC\). Gọi \(H,\,\,K\) lần lượt là giao điểm của \(Oy\) với \(BC\) và \(MN\).
\(A\) nằm trên \(Ox\) mà \(Ox//BC\) nên \(AH \bot BC,\,\,\,AK \bot MN\)
Suy ra \(\dfrac{{{S_{AMN}}}}{{{S_{ABC}}}} = \dfrac{1}{4} \Leftrightarrow {\left( {\dfrac{{AK}}{{AH}}} \right)^2} = \dfrac{1}{4} \Leftrightarrow \dfrac{{AK}}{{AH}} = \dfrac{1}{2}\)
\(A\left( {0;2} \right)\), \(K\) là giao điểm của \(Oy\) và \(MN\) mà \(MN \in Ox\) nên \(K\left( {0;0} \right)\)
Suy ra \(AK = 2\) \( \Rightarrow AH = 4\)
\(H\) là giao của \(BC\) và \(Ox\) nên \(H\left( {0; - {m^2} + 2} \right)\), \(H\) nằm dưới trục hoành. Suy ra
\( - {m^2} + 2 = - 2 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm 2\)
Mà \(m < 0\) nên \(m = - 2\)
Vậy \({m_0} \in \left( { - 3;1} \right)\)
Đáp án A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a,\,\,m\) là 2 số thực thỏa mãn \(0 < a \ne 1\) và \({\log _a}2 = m\). Giá trị của biểu thức \({a^m} + {a^{ - m}}\) bằng
Cho hai số thực dương \(x\) và \(y\) thỏa mãn \({\log _3}x + {\log _3}y = - 1\). Khẳng định nào dưới đây đúng?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?
.png)
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(BC = a\sqrt 2 \). Hình chiếu vuông góc \(H\) của \(S\) lên mặt phẳng đáy là trung điểm của đoạn thẳng \(BC\) và \(SA = \dfrac{{\sqrt 3 a}}{2}\)(tham khảo hình bên). Tính thể tích \(V\) của khối chóp đã cho.
.png)
Cho khối chóp \(S.ABC\) có cạnh ba cạnh \(AS,\,\,AB,\,\,AC\) đôi một vuông góc với nhau và \(AS = a,\,\,AB = 2a,\,\,AC = 3a\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SB\) và \(SC\) (tham khảo hình bên). Tính thể tích \(V\) của khối chóp \(S.AMN\)
.png)
Tính thể tích \(V\) của khối lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,AB = 2a,\,\,AC = a\sqrt 2 \) và \(AC' = a\sqrt 3 \) (tham khảo hình bên).
.png)
Tính tổng các nghiệm của phương trình \(\ln \left( {{x^2} - 3x} \right) = 0\)
Tính thể tích \(V\) của khối lăng trụ có chiều cao \(h = 3\,\,cm\) và diện tích đáy \(B = 10\,\,c{m^2}\)
Chiều cao \(h\) của khối chóp có diện tích đáy \(B\) và thể tích \(V\) được tính theo công thức nào dưới đây?
Số nghiệm của phương trình \({2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\) là
Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(2a\), mặt bên hợp với mặt đáy một góc bằng \(45^\circ \) (tham khảo hình bên). Tính thể tích \(V\) của khối cầu ngoại tiếp hình chóp đã cho.
.png)
Cho hàm số \(y = \dfrac{{mx - 1}}{{2x + 1}}\) (với \(m\) là tham số) thỏa mãn điều kiện \(\mathop {\max }\limits_{\left[ {1;2} \right]} y = 3\). Khẳng định nào dưới đây đúng?
Hàm số \(y = {x^3} - {x^2} - x + 2\) nghịch biến trên khoảng nào dưới đây?
.png)