Câu hỏi Đáp án 3 năm trước 92

Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

A.

\({x^2} + {y^2} + {z^2} - 2x - 2y - 2z - 8 = 0.\)          


B.

\({(x + 1)^2} + {(y - 2)^2} + {(z - 1)^2} = 9.\)


C.

\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0\)


Đáp án chính xác ✅

D.

\(3{x^2} + 3{y^2} + 3{z^2} - 6x + 12y - 24z + 16 = 0\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c

Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a =  - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.

Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a =  - 1,b =  - 1,c =  - 1,d =  - 8\)  có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d}  = \sqrt {11} \) là một phương trình mặt cầu.

Xét phương án C có

\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\).

Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = 1,b =  - \dfrac{1}{2},c =  - \dfrac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \dfrac{1}{4} + \dfrac{1}{4} - 8 < 0.\)

Không phải là phương trình mặt cầu.

Hướng dẫn giải:

Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} - d > 0\)

Giải thích thêm:

Một số em có thể sẽ chọn nhầm đáp án A vì xác định sai số \(d = 8\) dẫn đến tính \({a^2} + {b^2} + {c^2} - d < 0\) là sai.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( { - 1; - 2;4} \right)\), \(B\left( { - 4; - 2;0} \right)\), \(C\left( {3; - 2;1} \right)\) và \(D\left( {1;1;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) kẻ từ đỉnh \(D\) bằng:

Xem lời giải » 3 năm trước 101
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:

Xem lời giải » 3 năm trước 98
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A\left( {2,4, - 1} \right),{\rm{ }}B\left( {0, - 2,1} \right)$ và đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = 1 + t\end{array} \right.\). Gọi $\left( S \right)$ là mặt cầu đi qua $A,B$ và có tâm thuộc đường thẳng $d$. Đường kính mặt cầu $\left( S \right)$ là

Xem lời giải » 3 năm trước 97
Câu 4: Trắc nghiệm

Trong không gian với hệ tọa độ  $Oxyz$, cho các điểm  $A\left( {1,2, - 4} \right);{\rm{ }}B\left( {1, - 3,1} \right){\rm{ }} và {\rm{ }}C\left( {2,2,3} \right)$. Mặt cầu $(S) $ đi qua  $A,B,C$ và có tâm thuộc mặt phẳng $(xOy) $ có bán kính là :

Xem lời giải » 3 năm trước 95
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A}  + \overrightarrow {B'B}  + \overrightarrow {C'C}  = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:

Xem lời giải » 3 năm trước 92
Câu 6: Trắc nghiệm

Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:

Xem lời giải » 3 năm trước 90
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho hai vectơ $\overrightarrow a  = \left( {1;1; - 2} \right)$, $\overrightarrow b  = \left( { - 3;0; - 1} \right)$ và điểm $A\left( {0;2;1} \right)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow {AM}  = 2\overrightarrow a  - \overrightarrow b $ là:

Xem lời giải » 3 năm trước 88
Câu 8: Trắc nghiệm

Trong không gian $Oxyz$ cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính $R$ của mặt cầu $(S)$.

Xem lời giải » 3 năm trước 88
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), mặt cầu tâm $I\left( {6,3, - 4} \right)$ tiếp xúc với $Ox$ có bán kính $R$ bằng:

Xem lời giải » 3 năm trước 84
Câu 10: Trắc nghiệm

Hai véc tơ \(\overrightarrow u  = \left( {a;1;b} \right),\overrightarrow v  = \left( { - 2;2;c} \right)\) cùng phương thì:

Xem lời giải » 3 năm trước 83
Câu 11: Trắc nghiệm

Cho hai véc tơ \(\overrightarrow u  = \left( { - 1; - 1; - 1} \right),\overrightarrow v  = \left( {2;1;0} \right)\), khi đó cô sin của góc hợp bởi hai véc tơ đó là:

Xem lời giải » 3 năm trước 82

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »