Câu hỏi Đáp án 3 năm trước 98

Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A\left( {2,4, - 1} \right),{\rm{ }}B\left( {0, - 2,1} \right)$ và đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = 1 + t\end{array} \right.\). Gọi $\left( S \right)$ là mặt cầu đi qua $A,B$ và có tâm thuộc đường thẳng $d$. Đường kính mặt cầu $\left( S \right)$ là

A.

\(2\sqrt {19} .\)           


Đáp án chính xác ✅

B.

\(2\sqrt {17} .\)


C.

\(\sqrt {19} .\)


D.

\(\sqrt {17} .\) 


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Giả sử tâm $I$ của mặt cầu $\left( S \right)$  thuộc $d$, ta có $I\left( {1 + 2t,2 - t,1 + t} \right)$. Vì mặt cầu $\left( S \right)$  qua $A$ và $B$ nên ta có $IA = IB = R$ .

Từ giả thiết $IA = IB$ ta có \(I{A^2} = I{B^2}\)

\( \Leftrightarrow {(2t - 1)^2} + {(t + 2)^2} + {(2 + t)^2} = {(1 + 2t)^2} + {(4 - t)^2} + {t^2}\)

\( \Leftrightarrow  - 4t + 4t + 4 + 4t + 4 = 4t - 8t + 16\)

\( \Leftrightarrow 8t = 8\)

\( \Leftrightarrow t = 1\)

Suy ra $I\left( {3,1,2} \right)$ . Do đó \(R = IA = \sqrt {9 + 9 + 1}  = \sqrt {19} \)

Do đó, đường kính mặt cầu là \(2R = 2\sqrt {19} \)

Hướng dẫn giải:

- Gọi tọa độ tâm mặt cầu theo tham số của đường thẳng \(d\).

- \(\left( S \right)\) đi qua \(A,B \Leftrightarrow IA = IB\), từ đó tìm được tọa độ \(I\) và bán kính \(IA\) suy ra đường kính \(2IA\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( { - 1; - 2;4} \right)\), \(B\left( { - 4; - 2;0} \right)\), \(C\left( {3; - 2;1} \right)\) và \(D\left( {1;1;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) kẻ từ đỉnh \(D\) bằng:

Xem lời giải » 3 năm trước 102
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho ba vector $\vec a = \left( {2;3; - 5} \right);{\mkern 1mu} {\mkern 1mu} \vec b = \left( {0; - 3;4} \right);{\mkern 1mu} {\mkern 1mu} \vec c = \left( {1; - 2;3} \right)$. Tọa độ vector $\vec n = 3\vec a + 2\vec b - \vec c$ là:

Xem lời giải » 3 năm trước 98
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ  $Oxyz$, cho các điểm  $A\left( {1,2, - 4} \right);{\rm{ }}B\left( {1, - 3,1} \right){\rm{ }} và {\rm{ }}C\left( {2,2,3} \right)$. Mặt cầu $(S) $ đi qua  $A,B,C$ và có tâm thuộc mặt phẳng $(xOy) $ có bán kính là :

Xem lời giải » 3 năm trước 96
Câu 4: Trắc nghiệm

Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

Xem lời giải » 3 năm trước 92
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A}  + \overrightarrow {B'B}  + \overrightarrow {C'C}  = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:

Xem lời giải » 3 năm trước 92
Câu 6: Trắc nghiệm

Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:

Xem lời giải » 3 năm trước 90
Câu 7: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho hai vectơ $\overrightarrow a  = \left( {1;1; - 2} \right)$, $\overrightarrow b  = \left( { - 3;0; - 1} \right)$ và điểm $A\left( {0;2;1} \right)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow {AM}  = 2\overrightarrow a  - \overrightarrow b $ là:

Xem lời giải » 3 năm trước 89
Câu 8: Trắc nghiệm

Trong không gian $Oxyz$ cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính $R$ của mặt cầu $(S)$.

Xem lời giải » 3 năm trước 88
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), mặt cầu tâm $I\left( {6,3, - 4} \right)$ tiếp xúc với $Ox$ có bán kính $R$ bằng:

Xem lời giải » 3 năm trước 85
Câu 10: Trắc nghiệm

Hai véc tơ \(\overrightarrow u  = \left( {a;1;b} \right),\overrightarrow v  = \left( { - 2;2;c} \right)\) cùng phương thì:

Xem lời giải » 3 năm trước 84
Câu 11: Trắc nghiệm

Cho hai véc tơ \(\overrightarrow u  = \left( { - 1; - 1; - 1} \right),\overrightarrow v  = \left( {2;1;0} \right)\), khi đó cô sin của góc hợp bởi hai véc tơ đó là:

Xem lời giải » 3 năm trước 83

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »