Câu hỏi Đáp án 3 năm trước 77

Trong không gian với hệ tọa độ $Oxyz$, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm $M\left( {2;3;3} \right),{\rm{ }}N\left( {2; - 1; - 1} \right),{\rm{ }}P\left( { - 2; - 1;3} \right)$ và có tâm thuộc mặt phẳng \((\alpha ):2x + 3y - z + 2 = 0\).

A.

\({x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 10 = 0\)


B.

\({x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\)


Đáp án chính xác ✅

C.

\({x^2} + {y^2} + {z^2} + 4x - 2y + 6z + 2 = 0\)                    


D.

\({x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 2 = 0\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

- Liệt kê các phương trình mặt cầu cho trong 4 đáp án

+ A cho mặt cầu tâm \({I_A}(1, - 1,1)\)  và \({R_A} = \sqrt {13} \)

+ B cho mặt cầu tâm \({I_B}(2, - 1,3)\)  và \({R_B} = 4\)

+ C cho mặt cầu tâm \({I_C}( - 2,1, - 3)\)  và \({R_C} = 2\sqrt 3 \)

+ D cho mặt cầu tâm \({I_D}(1, - 1,1)\)  và \({R_D} = \sqrt 5 \)

- Kiểm tra các tâm có thuộc mặt phẳng \((\alpha )\)  hay không. Loại được đáp án C.

- Ta thấy\({I_A} \equiv {I_D} = I(1, - 1,1)\), nên ta tính bán kính $R = IM$ rồi so sánh với \({R_A},{R_D}\) .

Có \(IM = \sqrt {{1^2} + {4^2} + {2^2}}  = \sqrt {21} \) . Ta thấy \(IM \ne {R_A} \ne {R_D}\). Loại A và D

Hướng dẫn giải:

Xét từng đáp án:

- Xác định tâm mặt cầu và thay vào mặt phẳng.

- Tính bán kính mặt cầu và kiểm tra khoảng cách từ tâm đến các điểm \(A,B,C\) bằng bán kính.

Giải thích thêm:

Tự luận:

\(\overrightarrow {MN}  = \left( {0; - 4; - 4} \right)\), \(\overrightarrow {NP}  = \left( { - 4;0;4} \right)\)

Gọi (P) và (Q) lần lượt là mặt phẳng trung trực của MN và NP.

Khi đó tâm I của mặt cầu thuộc (P) và (Q)

Ta có:

(P) qua trung điểm A(2;1;1) của MN và nhận vecto \(\overrightarrow {{n_1}}  = \left( {0;1;1} \right)\) làm vecto pháp tuyến nên có phương trình:

\(y - 1 + z - 1 = 0 \Leftrightarrow y + z - 2 = 0\)

(Q) qua trung điểm B(0;-1;1) của NP và nhận vecto \(\overrightarrow {{n_2}} = \left( {1;0; - 1} \right)\) làm vecto pháp tuyến nên có phương trình:

\(x - 0 - \left( {z - 1} \right) = 0 \Leftrightarrow x - z + 1 = 0\)

Do I là tâm mặt cầu đi qua 3 điểm M,N,P nên I phải thuộc mặt phẳng trung trực của MN và NP.

Khi đó tọa độ của I là nghiệm của hệ

\(\left\{ \begin{array}{l}2x + 3y - z + 2 = 0\\y + z - 2 = 0\\x - z + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y =  - 1\\z = 3\end{array} \right.\)

=> I(2;-1;3)

=> R=4

Mặt cầu cần tìm là:

\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 3} \right)^2} = 16\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 2 = 0\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$

Xem lời giải » 3 năm trước 119
Câu 2: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:

Xem lời giải » 3 năm trước 94
Câu 3: Trắc nghiệm

Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:

Xem lời giải » 3 năm trước 93
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:

Xem lời giải » 3 năm trước 90
Câu 5: Trắc nghiệm

Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành

Xem lời giải » 3 năm trước 89
Câu 6: Trắc nghiệm

Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm

Xem lời giải » 3 năm trước 88
Câu 7: Trắc nghiệm

Hàm số \(y = {2^{\ln x + {x^2}}}\) có đạo hàm là

Xem lời giải » 3 năm trước 86
Câu 8: Trắc nghiệm

Cho véc tơ \(\overrightarrow u  = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:

Xem lời giải » 3 năm trước 85
Câu 9: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)

Xem lời giải » 3 năm trước 84
Câu 10: Trắc nghiệm

Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:

Xem lời giải » 3 năm trước 83
Câu 11: Trắc nghiệm

Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x =  - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$  Mệnh đề nào sau đây đúng?

Đề kiểm tra giữa học kì 2 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 83
Câu 12: Trắc nghiệm

Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) =  - \dfrac{1}{e}$ có bao nhiêu nghiệm?

Xem lời giải » 3 năm trước 82
Câu 13: Trắc nghiệm

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{x^3}}}{{\sqrt {4 - {x^2}} }}\).

Xem lời giải » 3 năm trước 82
Câu 14: Trắc nghiệm

 Một viên gạch hoa hình vuông cạnh \(40\)cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

Xem lời giải » 3 năm trước 81
Câu 15: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ, chọn kết luận đúng:

Đề kiểm tra giữa học kì 2 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 80

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »