Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
A.
$0$
B.
$1$
C.
$3$
D.
$2$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
\(\begin{array}{l}f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R\\ \Rightarrow \int\limits_{}^{} {f'\left( x \right){{\left[ {f\left( x \right)} \right]}^{2018}}dx} = \int\limits_{}^{} {x{e^x}dx} \\ \Leftrightarrow \int\limits_{}^{} {{{\left[ {f\left( x \right)} \right]}^{2018}}d\left( {f\left( x \right)} \right)} = \int\limits_{}^{} {xd\left( {{e^x}} \right)} \\ \Leftrightarrow \dfrac{{{{\left[ {f\left( x \right)} \right]}^{2019}}}}{{2019}} = x{e^x} - \int\limits_{}^{} {{e^x}dx} + C\\ \Leftrightarrow \dfrac{{{{\left[ {f\left( x \right)} \right]}^{2019}}}}{{2019}} = x{e^x} - {e^x} + C\\ \Leftrightarrow {\left[ {f\left( x \right)} \right]^{2019}} = 2019\left( {x{e^x} - {e^x} + C} \right)\\f\left( 1 \right) = 1 \Leftrightarrow {1^{2019}} = 2019C \Leftrightarrow C = \dfrac{1}{{2019}}\\ \Rightarrow {\left[ {f\left( x \right)} \right]^{2019}} = 2019\left( {x{e^x} - {e^x} + \dfrac{1}{{2019}}} \right)\\ \Rightarrow f\left( x \right) = - \dfrac{1}{e} \Rightarrow {\left[ {f\left( x \right)} \right]^{2019}} = \dfrac{{ - 1}}{{{e^{2019}}}}\\ \Leftrightarrow 2019\left( {x{e^x} - {e^x} + \dfrac{1}{{2019}}} \right) = \dfrac{{ - 1}}{{{e^{2019}}}}\\ \Leftrightarrow 2019\left( {x{e^x} - {e^x}} \right) + 1 + \dfrac{1}{{{e^{2019}}}} = 0\end{array}\)
Xét hàm số $f\left( x \right) = 2019\left( {x{e^x} - {e^x}} \right) + 1 + \dfrac{1}{{{e^{2019}}}}$ ta có
$f'\left( x \right) = 2019\left( {{e^x} + x{e^x} - {e^x}} \right) = 2019x{e^x} = 0 \Leftrightarrow x = 0$
$f\left( 0 \right) = - 2018 + \dfrac{1}{{{e^{2019}}}} < 0$
Lập BBT ta thấy đồ thị hàm số $y = f\left( x \right)$ cắt trục hoành tại hai điểm phân biệt $ \Rightarrow $ phương trình $f\left( x \right) = - \dfrac{1}{e}$ có 2 nghiệm phân biệt.
Hướng dẫn giải:
+) Nguyên hàm hai vế tìm f(x).
+) Sử dụng phương pháp hàm số giải phương trình $f\left( x \right) = - \dfrac{1}{e}$.
\(\begin{array}{l}f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R\\ \Rightarrow \int\limits_{}^{} {f'\left( x \right){{\left[ {f\left( x \right)} \right]}^{2018}}dx} = \int\limits_{}^{} {x{e^x}dx} \\ \Leftrightarrow \int\limits_{}^{} {{{\left[ {f\left( x \right)} \right]}^{2018}}d\left( {f\left( x \right)} \right)} = \int\limits_{}^{} {xd\left( {{e^x}} \right)} \\ \Leftrightarrow \dfrac{{{{\left[ {f\left( x \right)} \right]}^{2019}}}}{{2019}} = x{e^x} - \int\limits_{}^{} {{e^x}dx} + C\\ \Leftrightarrow \dfrac{{{{\left[ {f\left( x \right)} \right]}^{2019}}}}{{2019}} = x{e^x} - {e^x} + C\\ \Leftrightarrow {\left[ {f\left( x \right)} \right]^{2019}} = 2019\left( {x{e^x} - {e^x} + C} \right)\\f\left( 1 \right) = 1 \Leftrightarrow {1^{2019}} = 2019C \Leftrightarrow C = \dfrac{1}{{2019}}\\ \Rightarrow {\left[ {f\left( x \right)} \right]^{2019}} = 2019\left( {x{e^x} - {e^x} + \dfrac{1}{{2019}}} \right)\\ \Rightarrow f\left( x \right) = - \dfrac{1}{e} \Rightarrow {\left[ {f\left( x \right)} \right]^{2019}} = \dfrac{{ - 1}}{{{e^{2019}}}}\\ \Leftrightarrow 2019\left( {x{e^x} - {e^x} + \dfrac{1}{{2019}}} \right) = \dfrac{{ - 1}}{{{e^{2019}}}}\\ \Leftrightarrow 2019\left( {x{e^x} - {e^x}} \right) + 1 + \dfrac{1}{{{e^{2019}}}} = 0\end{array}\)
Xét hàm số $f\left( x \right) = 2019\left( {x{e^x} - {e^x}} \right) + 1 + \dfrac{1}{{{e^{2019}}}}$ ta có
$f'\left( x \right) = 2019\left( {{e^x} + x{e^x} - {e^x}} \right) = 2019x{e^x} = 0 \Leftrightarrow x = 0$
$f\left( 0 \right) = - 2018 + \dfrac{1}{{{e^{2019}}}} < 0$
Lập BBT ta thấy đồ thị hàm số $y = f\left( x \right)$ cắt trục hoành tại hai điểm phân biệt $ \Rightarrow $ phương trình $f\left( x \right) = - \dfrac{1}{e}$ có 2 nghiệm phân biệt.
Hướng dẫn giải:
+) Nguyên hàm hai vế tìm f(x).
+) Sử dụng phương pháp hàm số giải phương trình $f\left( x \right) = - \dfrac{1}{e}$.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$
Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:
Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:
Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
Cho véc tơ \(\overrightarrow u = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:
Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x = - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$ Mệnh đề nào sau đây đúng?

Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{x^3}}}{{\sqrt {4 - {x^2}} }}\).
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ, chọn kết luận đúng:
Một viên gạch hoa hình vuông cạnh \(40\)cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$ và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.