Trong không gian với hệ tọa độ Oxyz, cho \(M\left( {2; - 1;1} \right)\) và vectơ \(\overrightarrow n = \left( {1;3;4} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) đi qua điểm M và có vectơ pháp tuyến \(\overrightarrow n \)
A.
\(2{\rm{x}} - y + z + 3 = 0\)
B.
\(2{\rm{x}} - y + z - 3 = 0\)
C.
\(x + 3y + 4{\rm{z}} + 3 = 0\)
D.
\(x + 3y + 4{\rm{z}} - 3 = 0\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) và có vectơ pháp tuyến \(\overrightarrow n \) là
\(1\left( {{\rm{x}} - 2} \right) + 3\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0\)\( \Leftrightarrow x + 3y + 4{\rm{z}} - 3 = 0\)
Hướng dẫn giải:
Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có véc tơ pháp tuyến \(\overrightarrow n = \left( {a;b;c} \right)\) là \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)
Giải thích thêm:
HS có thể sẽ nhìn nhầm tọa độ điểm \(M\) là tọa độ véc tơ pháp tuyến và tọa độ véc tơ pháp tuyến là tọa độ điểm đi qua nên chọn nhầm đáp án A hoặc B.
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) và có vectơ pháp tuyến \(\overrightarrow n \) là
\(1\left( {{\rm{x}} - 2} \right) + 3\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0\)\( \Leftrightarrow x + 3y + 4{\rm{z}} - 3 = 0\)
Hướng dẫn giải:
Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có véc tơ pháp tuyến \(\overrightarrow n = \left( {a;b;c} \right)\) là \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0\)
Giải thích thêm:
HS có thể sẽ nhìn nhầm tọa độ điểm \(M\) là tọa độ véc tơ pháp tuyến và tọa độ véc tơ pháp tuyến là tọa độ điểm đi qua nên chọn nhầm đáp án A hoặc B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$
Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:
Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:
Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:
Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là:
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)
Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$ và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.
Trong không gian với hệ tọa độ Oxyz , tìm tất cả các giá trị của m để phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+2z+m=0\) là phương trình mặt cầu.
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Cho véc tơ \(\overrightarrow u = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x = - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$ Mệnh đề nào sau đây đúng?
