Câu hỏi Đáp án 3 năm trước 85

Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( {2;0;0} \right);\,\,B\left( {0;4;0} \right);\,\,C\left( {0;0;6} \right)\). Điểm M thay đổi trên mặt phẳng \(\left( {ABC} \right)\) và điểm N là điểm trên tia OM sao cho \(OM.ON = 12\). Biết rằng khi M thay đổi, điểm N luôn thuộc một mặt cầu cố định. Tìm bán kính của mặt cầu đó?

A.

\(\dfrac{7}{2}\)         


Đáp án chính xác ✅

B.

\(3\sqrt 2 \)


C.

\(2\sqrt 3 \)


D.

\(\dfrac{5}{2}\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Gọi điểm \(N\left( {x;y;z} \right)\).

Ta có O, M, N thẳng hàng \( \Rightarrow OM.ON = \overrightarrow {OM} .\overrightarrow {ON}  = 12\)

\(\begin{array}{l} \Rightarrow \overrightarrow {OM}  = \dfrac{{12}}{{\overrightarrow {ON} }} = \dfrac{{12}}{{O{N^2}}}.\overrightarrow {ON}  = \dfrac{{12}}{{{x^2} + {y^2} + {z^2}}}\left( {x;y;z} \right)\\ \Rightarrow M\left( {\dfrac{{12x}}{{{x^2} + {y^2} + {z^2}}};\dfrac{{12y}}{{{x^2} + {y^2} + {z^2}}};\dfrac{{12z}}{{{x^2} + {y^2} + {z^2}}}} \right)\end{array}\)

Mặt phẳng \(\left( {ABC} \right)\) có phương trình \(\dfrac{x}{2} + \dfrac{y}{4} + \dfrac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\)

Do \(M \in \left( {ABC} \right)\) nên thay tọa độ điểm M vào phương trình mặt phẳng (ABC) ta có:

\(\begin{array}{l}6\dfrac{{12x}}{{{x^2} + {y^2} + {z^2}}} + 3\dfrac{{12y}}{{{x^2} + {y^2} + {z^2}}} + 2\dfrac{{12z}}{{{x^2} + {y^2} + {z^2}}} - 12 = 0\\ \Leftrightarrow 6x + 3y + 2z - \left( {{x^2} + {y^2} + {z^2}} \right) = 0\\ \Leftrightarrow {x^2} + {y^2} + {z^2} - 6x - 3y - 2z = 0\end{array}\)

Vậy khi M thay đổi trên \(\left( {ABC} \right)\) thì N luôn thuộc mặt cầu tâm \(I\left( {3;\dfrac{3}{2};1} \right)\), bán kính \(R = \sqrt {9 + \dfrac{9}{4} + 1}  = \dfrac{7}{2}\).

Hướng dẫn giải:

+) Gọi điểm \(N\left( {x;y;z} \right)\).

+) Ta có O, M, N thẳng hàng \( \Rightarrow OM.ON = \overrightarrow {OM} .\overrightarrow {ON}  = 12\)

+) Tìm tọa độ điểm M theo x, y, z, viết phương trình mặt phẳng (ABC) dạng đoạn chắn.

+) \(M \in \left( {ABC} \right)\), rút ra phương trình mặt cầu.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm  \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.

Xem lời giải » 3 năm trước 116
Câu 2: Trắc nghiệm

Trong không gian tọa độ \(Oxyz\), tính thể tích khối tứ diện \(OBCD\) biết \(B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right)\).

Xem lời giải » 3 năm trước 115
Câu 3: Trắc nghiệm

Công thức tính độ dài véc tơ \(\overrightarrow u  = \left( {a;b;c} \right)\) là:

Xem lời giải » 3 năm trước 112
Câu 4: Trắc nghiệm

Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt

Xem lời giải » 3 năm trước 111
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.

Xem lời giải » 3 năm trước 109
Câu 6: Trắc nghiệm

Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ? 

Đề kiểm tra học kì 2 - Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 109
Câu 7: Trắc nghiệm

Hàm số \(F\left( x \right) = {x^5} + 5{x^3} - x + 2\) là một nguyên hàm của hàm số nào sau đây? (C là hằng số).

Xem lời giải » 3 năm trước 108
Câu 8: Trắc nghiệm

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).

Xem lời giải » 3 năm trước 106
Câu 9: Trắc nghiệm

Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).

Xem lời giải » 3 năm trước 104
Câu 10: Trắc nghiệm

Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 100
Câu 11: Trắc nghiệm

Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?

Xem lời giải » 3 năm trước 98
Câu 12: Trắc nghiệm

Tính tích phân \(I=\int\limits_{0}^{3}{\frac{\text{d}x}{x+2}}\). 

Xem lời giải » 3 năm trước 97
Câu 13: Trắc nghiệm

Trong không gian \(Oxyz,\) cho mặt cầu \((S):{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 6,\) tiếp xúc với hai mặt phẳng \((P):x + y + 2z\, + \,5 = 0,\,\,(Q):2x - y + z\, - \,5 = 0\) lần lượt tại các tiếp điểm $A,\,\,B.$ Độ dài đoạn thẳng $AB$ là

Xem lời giải » 3 năm trước 95
Câu 14: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)

Khẳng định nào sau đâu là đúng?

Xem lời giải » 3 năm trước 95
Câu 15: Trắc nghiệm

Trong không gian Oxyz, phương trình mặt phẳng đi qua ba điểm \(A\left( { - 3;0;0} \right);\,\,B\left( {0; - 2;0} \right);\) \(C\left( {0;0;1} \right)\) được viết dưới dạng \(ax + by - 6z + c = 0\). Giá trị của \(T = a + b - c\) là :

Xem lời giải » 3 năm trước 95

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »