Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Ta có: \(\overrightarrow {OB} = \left( {2;0;0} \right),\overrightarrow {OC} = \left( {0;1;0} \right),\overrightarrow {OD} = \left( {0;0; - 3} \right)\)
Do đó \(\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|} \right) = \left( {0;0;2} \right)\)
Suy ra \({V_{OBCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right].\overrightarrow {OD} } \right| = \dfrac{1}{6}\left| {0.0 + 0.0 + 2.\left( { - 3} \right)} \right| = 1\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích tứ diện \(ABCD\) là \({V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)
Giải thích thêm:
Một số em áp dụng nhầm công thức \({V_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\) dẫn đến chọn nhầm đáp án B là sai.
Ta có: \(\overrightarrow {OB} = \left( {2;0;0} \right),\overrightarrow {OC} = \left( {0;1;0} \right),\overrightarrow {OD} = \left( {0;0; - 3} \right)\)
Do đó \(\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\1\end{array}&\begin{array}{l}0\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}0\\0\end{array}&\begin{array}{l}2\\0\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}2\\0\end{array}&\begin{array}{l}0\\1\end{array}\end{array}} \right|} \right) = \left( {0;0;2} \right)\)
Suy ra \({V_{OBCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {OB} ,\overrightarrow {OC} } \right].\overrightarrow {OD} } \right| = \dfrac{1}{6}\left| {0.0 + 0.0 + 2.\left( { - 3} \right)} \right| = 1\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích tứ diện \(ABCD\) là \({V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)
Giải thích thêm:
Một số em áp dụng nhầm công thức \({V_{ABCD}} = \left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\) dẫn đến chọn nhầm đáp án B là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.
Công thức tính độ dài véc tơ \(\overrightarrow u = \left( {a;b;c} \right)\) là:
Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt
Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ?

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.
Hàm số \(F\left( x \right) = {x^5} + 5{x^3} - x + 2\) là một nguyên hàm của hàm số nào sau đây? (C là hằng số).
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).
Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).
Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?
Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?
Tính tích phân \(I=\int\limits_{0}^{3}{\frac{\text{d}x}{x+2}}\).
Trong không gian Oxyz, phương trình mặt phẳng đi qua ba điểm \(A\left( { - 3;0;0} \right);\,\,B\left( {0; - 2;0} \right);\) \(C\left( {0;0;1} \right)\) được viết dưới dạng \(ax + by - 6z + c = 0\). Giá trị của \(T = a + b - c\) là :
Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)
Khẳng định nào sau đâu là đúng?
Trong không gian \(Oxyz,\) cho mặt cầu \((S):{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 6,\) tiếp xúc với hai mặt phẳng \((P):x + y + 2z\, + \,5 = 0,\,\,(Q):2x - y + z\, - \,5 = 0\) lần lượt tại các tiếp điểm $A,\,\,B.$ Độ dài đoạn thẳng $AB$ là
Cho các phát biểu sau: (Với $C$ là hằng số):
(I) \(\int\limits_{}^{} {0dx} = x + C\)
(II) \(\int\limits_{}^{} {\dfrac{1}{x}dx} = \ln \left| x \right| + C\)
(III) \(\int\limits_{}^{} {\sin xdx} = - \cos x + C\)
(IV) \(\int\limits_{}^{} {\cot xdx} = - \dfrac{1}{{{{\sin }^2}x}} + C\)
(V) \(\int\limits_{}^{} {{e^x}dx} = {e^x} + C\)
(VI) \(\int\limits_{}^{} {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {\forall n \ne - 1} \right)\)
Số phát biểu đúng là: