Câu hỏi Đáp án 3 năm trước 111

Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt

A.

$\left\{ \begin{array}{l}u = x\\{\rm{d}}v = x\cos x\,{\rm{d}}x\end{array} \right.$


B.

$\left\{ \begin{array}{l}u = {x^2}\\{\rm{d}}v = \cos x\,{\rm{d}}x\end{array} \right.$


Đáp án chính xác ✅

C.

$\left\{ \begin{array}{l}u = \cos x\\{\rm{d}}v = {x^2}\,{\rm{d}}x\end{array} \right.$


D.

$\left\{ \begin{array}{l}u = {x^2}\cos x\\{\rm{d}}v = {\rm{d}}x\end{array} \right..$


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Đặt $\left\{ \begin{array}{l}u = {x^2}\\{\rm{d}}v = \cos x\,{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = 2x\,{\rm{d}}x\\v = \sin x\end{array} \right.,$ khi đó $I = \left. {{x^2}\sin x} \right|_0^{\dfrac{\pi }{2}} - 2\int\limits_0^{\dfrac{\pi }{2}} {x\sin x\,{\rm{d}}x} .$

Hướng dẫn giải:

Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Trong các tích phân có hàm đa thức và hàm lượng giác ta ưu tiên đặt $u$ bằng hàm đa thức.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm  \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.

Xem lời giải » 3 năm trước 116
Câu 2: Trắc nghiệm

Trong không gian tọa độ \(Oxyz\), tính thể tích khối tứ diện \(OBCD\) biết \(B\left( {2;0;0} \right),C\left( {0;1;0} \right),D\left( {0;0; - 3} \right)\).

Xem lời giải » 3 năm trước 114
Câu 3: Trắc nghiệm

Công thức tính độ dài véc tơ \(\overrightarrow u  = \left( {a;b;c} \right)\) là:

Xem lời giải » 3 năm trước 112
Câu 4: Trắc nghiệm

Cho hai hàm số \(y = {f_1}\left( x \right)\) và \(y = {f_2}\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và có đồ thị như hình vẽ bên. Gọi $S$ là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng \(x = a,x = b\). Thể tích $V$ của vật thể tròn xoay tạo thành khi quay $S$ quanh trục $Ox$ được tính bởi công thức nào sau đây ? 

Đề kiểm tra học kì 2 - Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 109
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 4{\rm{z}} - 16 = 0$ và đường thẳng $d:\dfrac{{x - 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa $d$ và tiếp xúc với mặt cầu $(S)$.

Xem lời giải » 3 năm trước 109
Câu 6: Trắc nghiệm

Hàm số \(F\left( x \right) = {x^5} + 5{x^3} - x + 2\) là một nguyên hàm của hàm số nào sau đây? (C là hằng số).

Xem lời giải » 3 năm trước 107
Câu 7: Trắc nghiệm

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).

Xem lời giải » 3 năm trước 106
Câu 8: Trắc nghiệm

Trên mặt phẳng tọa độ \(Oxy\), tìm tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left| {z - 2} \right| + \left| {z + 2} \right| = 10\).

Xem lời giải » 3 năm trước 104
Câu 9: Trắc nghiệm

Gọi \(A\) là điểm biểu diễn của số phức \(z = 3 + 2i\) và \(B\) là điểm biểu diễn của số phức \(z' = 2 + 3i\). Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 100
Câu 10: Trắc nghiệm

Cho $I = \int\limits_0^1 {\left( {2x - {m^2}} \right)dx} $. Có bao nhiêu giá trị nguyên dương m để $I + 3 \ge 0$?

Xem lời giải » 3 năm trước 98
Câu 11: Trắc nghiệm

Tính tích phân \(I=\int\limits_{0}^{3}{\frac{\text{d}x}{x+2}}\). 

Xem lời giải » 3 năm trước 96
Câu 12: Trắc nghiệm

Trong không gian Oxyz, phương trình mặt phẳng đi qua ba điểm \(A\left( { - 3;0;0} \right);\,\,B\left( {0; - 2;0} \right);\) \(C\left( {0;0;1} \right)\) được viết dưới dạng \(ax + by - 6z + c = 0\). Giá trị của \(T = a + b - c\) là :

Xem lời giải » 3 năm trước 95
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) liên tục và nhận giá trị dương trên \(\mathbb{R}.\) Gọi \({D_1}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right),\) các đường \(x = 0,\,\,x = 1\) và trục \(Ox.\) Gọi \({D_2}\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{1}{3}f\left( x \right),\) các đường \(x = 0,\,\,\,x = 1\) và trục \(Ox.\) Quay các hình phẳng \({D_1},\,\,{D_2}\) quanh trục \(Ox\) ta được các khối tròn xoay có thể tích lần lượt là \({V_1},\,\,{V_2}.\)

Khẳng định nào sau đâu là đúng?

Xem lời giải » 3 năm trước 95
Câu 14: Trắc nghiệm

Trong không gian \(Oxyz,\) cho mặt cầu \((S):{(x - 1)^2} + {(y - 2)^2} + {(z + 1)^2} = 6,\) tiếp xúc với hai mặt phẳng \((P):x + y + 2z\, + \,5 = 0,\,\,(Q):2x - y + z\, - \,5 = 0\) lần lượt tại các tiếp điểm $A,\,\,B.$ Độ dài đoạn thẳng $AB$ là

Xem lời giải » 3 năm trước 94
Câu 15: Trắc nghiệm

Cho các phát biểu sau: (Với $C$ là hằng số):

(I) \(\int\limits_{}^{} {0dx}  = x + C\)

(II) \(\int\limits_{}^{} {\dfrac{1}{x}dx}  = \ln \left| x \right| + C\)

(III) \(\int\limits_{}^{} {\sin xdx}  =  - \cos x + C\)

(IV) \(\int\limits_{}^{} {\cot xdx}  =  - \dfrac{1}{{{{\sin }^2}x}} + C\)

(V) \(\int\limits_{}^{} {{e^x}dx}  = {e^x} + C\)

(VI) \(\int\limits_{}^{} {{x^n}dx}  = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\,\,\left( {\forall n \ne  - 1} \right)\)

Số phát biểu đúng là:

Xem lời giải » 3 năm trước 93

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »