Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Ta có: $y' = {x^2} - 4mx + 4m$.
Hàm số nghịch biến trên $\left( { - 2;0} \right) \Rightarrow y' \leqslant 0,\forall x \in \left( { - 2;0} \right) \Leftrightarrow {x^2} - 4mx + 4m \leqslant 0,\forall x \in \left( { - 2;0} \right)$ $ \Leftrightarrow {x^2} - 4m\left( {x - 1} \right) \leqslant 0 \Leftrightarrow 4m\left( {x - 1} \right) \geqslant {x^2} \Leftrightarrow 4m \leqslant \dfrac{{{x^2}}}{{x- 1}}$ (vì $ - 2 < x < 0$)
Xét hàm $g\left( x \right) = \dfrac{{{x^2}}}{{x - 1}}$ trên $\left( { - 2;0} \right)$ ta có:
$g'\left( x \right) = \dfrac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{gathered}x = 0 \notin \left( { - 2;0} \right) \hfill \\x = 2 \notin \left( { - 2;0} \right) \hfill \\ \end{gathered} \right. \Rightarrow g'\left( x \right) > 0,\forall x \in \left( { - 2;0} \right)$
Do đó hàm số $y = g\left( x \right)$ đồng biến trên $\left( { - 2;0} \right)$
Suy ra \(g\left( { - 2} \right) < g\left( x \right) < g\left( 0 \right),\forall x \in \left( { - 2;0} \right)\) hay \( - \dfrac{4}{3} < g\left( x \right) < 0,\forall x \in \left( { - 2;0} \right)\)
Khi đó \(4m \le g\left( x \right),\forall x \in \left( { - 2;0} \right) \Leftrightarrow 4m \le - \dfrac{4}{3} \Leftrightarrow m \le - \dfrac{1}{3}\)
Vậy $m \leqslant - \dfrac{1}{3}$
Hướng dẫn giải:
- Bước 1: Nêu điều kiện để hàm số đơn điệu trên $D$:
+ Hàm số $y = f\left( x \right)$ đồng biến trên $D \Leftrightarrow y' = f'\left( x \right) \geqslant 0,\forall x \in D$.
+ Hàm số $y = f\left( x \right)$ nghịch biến trên $D \Leftrightarrow y' = f'\left( x \right) \leqslant 0,\forall x \in D$.
- Bước 2: Từ điều kiện trên sử dụng các cách suy luận khác nhau cho từng bài toán để tìm $m$.
Chú ý: Dưới đây là một trong những cách hay được sử dụng:
- Rút $m$ theo $x$ sẽ xảy ra một trong hai trường hợp: $m \geqslant g\left( x \right),\forall x \in D$ hoặc $m \leqslant g\left( x \right),\forall x \in D$.
- Khảo sát tính đơn điệu của hàm số $y = g\left( x \right)$ trên $D$.
- Kết luận: Đánh giá $g(x)$ suy ra giá trị của $m$
- Bước 3: Kết luận.
Giải thích thêm:
HS thường nhầm lẫn ở bước kết luận giá trị cần tìm của $m$, khi tìm được $g\left( x \right) > g\left( { - 2} \right) = - \dfrac{4}{3}; g\left( x \right) < g\left( 0 \right) = 0$, nhiều em vội vàng kết luận $m \leqslant - \dfrac{4}{3}$ dẫn đến chọn nhầm đáp án C, một số em khác thì nhớ sai điều kiện, cho rằng $4m \leqslant 0 \Leftrightarrow m \leqslant 0$ và chọn nhầm đáp án D.
Ta có: $y' = {x^2} - 4mx + 4m$.
Hàm số nghịch biến trên $\left( { - 2;0} \right) \Rightarrow y' \leqslant 0,\forall x \in \left( { - 2;0} \right) \Leftrightarrow {x^2} - 4mx + 4m \leqslant 0,\forall x \in \left( { - 2;0} \right)$ $ \Leftrightarrow {x^2} - 4m\left( {x - 1} \right) \leqslant 0 \Leftrightarrow 4m\left( {x - 1} \right) \geqslant {x^2} \Leftrightarrow 4m \leqslant \dfrac{{{x^2}}}{{x- 1}}$ (vì $ - 2 < x < 0$)
Xét hàm $g\left( x \right) = \dfrac{{{x^2}}}{{x - 1}}$ trên $\left( { - 2;0} \right)$ ta có:
$g'\left( x \right) = \dfrac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{gathered}x = 0 \notin \left( { - 2;0} \right) \hfill \\x = 2 \notin \left( { - 2;0} \right) \hfill \\ \end{gathered} \right. \Rightarrow g'\left( x \right) > 0,\forall x \in \left( { - 2;0} \right)$
Do đó hàm số $y = g\left( x \right)$ đồng biến trên $\left( { - 2;0} \right)$
Suy ra \(g\left( { - 2} \right) < g\left( x \right) < g\left( 0 \right),\forall x \in \left( { - 2;0} \right)\) hay \( - \dfrac{4}{3} < g\left( x \right) < 0,\forall x \in \left( { - 2;0} \right)\)
Khi đó \(4m \le g\left( x \right),\forall x \in \left( { - 2;0} \right) \Leftrightarrow 4m \le - \dfrac{4}{3} \Leftrightarrow m \le - \dfrac{1}{3}\)
Vậy $m \leqslant - \dfrac{1}{3}$
Hướng dẫn giải:
- Bước 1: Nêu điều kiện để hàm số đơn điệu trên $D$:
+ Hàm số $y = f\left( x \right)$ đồng biến trên $D \Leftrightarrow y' = f'\left( x \right) \geqslant 0,\forall x \in D$.
+ Hàm số $y = f\left( x \right)$ nghịch biến trên $D \Leftrightarrow y' = f'\left( x \right) \leqslant 0,\forall x \in D$.
- Bước 2: Từ điều kiện trên sử dụng các cách suy luận khác nhau cho từng bài toán để tìm $m$.
Chú ý: Dưới đây là một trong những cách hay được sử dụng:
- Rút $m$ theo $x$ sẽ xảy ra một trong hai trường hợp: $m \geqslant g\left( x \right),\forall x \in D$ hoặc $m \leqslant g\left( x \right),\forall x \in D$.
- Khảo sát tính đơn điệu của hàm số $y = g\left( x \right)$ trên $D$.
- Kết luận: Đánh giá $g(x)$ suy ra giá trị của $m$
- Bước 3: Kết luận.
Giải thích thêm:
HS thường nhầm lẫn ở bước kết luận giá trị cần tìm của $m$, khi tìm được $g\left( x \right) > g\left( { - 2} \right) = - \dfrac{4}{3}; g\left( x \right) < g\left( 0 \right) = 0$, nhiều em vội vàng kết luận $m \leqslant - \dfrac{4}{3}$ dẫn đến chọn nhầm đáp án C, một số em khác thì nhớ sai điều kiện, cho rằng $4m \leqslant 0 \Leftrightarrow m \leqslant 0$ và chọn nhầm đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ $Oxyz,$ cho điểm $M\left( {1;1;2} \right).$ Hỏi có bao nhiêu mặt phẳng $\left( P \right)$ đi qua $M$ và cắt các trục $x'Ox,\,\,y'Oy,\,\,z'Oz$ lần lượt tại các điểm $A,\,\,B,\,\,C$ sao cho $OA = OB = OC \ne 0\,\,?$
Họ nguyên hàm của hàm số \(f\left( x \right)={{x}^{3}}+2x\) là:
Hình chiếu của điểm \(M\left( {2;2; - 1} \right)\) lên mặt phẳng \(\left( {Oyz} \right)\) là:
Trong không gian Oxyz, cho ba mặt phẳng \(\left( P \right):\,\,x+y-3z+1=0;\,\,\left( Q \right):\,\,2x+3y+z-1=0\); \(\left( R \right):\,\,x+2y+4z-2=0\). Xét mặt phẳng (T) chứa giao tuyến của hai mặt phẳng (P) và (Q), có $\overrightarrow {{n_{\left( T \right)}}} = \left( {1;a;b} \right)$ và tạo với mặt phẳng (R) một góc \(\alpha \). Biết \(\cos \alpha =\dfrac{23}{\sqrt{679}}\) có phương trình:
Nếu đặt $\left\{ \begin{array}{l}u = \ln \left( {x + 2} \right)\\{\rm{d}}v = x\,{\rm{d}}x\end{array} \right.$ thì tích phân $I = \int\limits_0^1 {x.\ln \left( {x + 2} \right){\rm{d}}x} $ trở thành
Trong không gian Oxyz, cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
Cho véc tơ \(\overrightarrow u = \left( {x;y;z} \right)\) và một số thực \(k \ne 0\). Tọa độ véc tơ \(\dfrac{1}{k}.\overrightarrow u \) là:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x = - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$ Mệnh đề nào sau đây đúng?

Tìm nguyên hàm của hàm số \(f\left( x \right)=\sin 2x.\)
Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{x^3}}}{{\sqrt {4 - {x^2}} }}\).
Cho hàm số $f\left( x \right)$ thỏa mãn $f'\left( x \right){\left[ {f\left( x \right)} \right]^{2018}} = x.{e^x}{\mkern 1mu} {\mkern 1mu} \forall x \in R$ và $f\left( 1 \right) = 1$. Hỏi phương trình $f\left( x \right) = - \dfrac{1}{e}$ có bao nhiêu nghiệm?
Cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\), khi đó độ dài đoạn thẳng \(AB\) được tính theo công thức:
Một viên gạch hoa hình vuông cạnh \(40\)cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm của viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên). Diện tích mỗi cánh hoa của viên gạch bằng

Trong không gian với hệ tọa độ \(Oxyz\), cho sáu điểm \(A\left( {1;2;3} \right)\), \(B\left( {2; - 1;1} \right)\), \(C\left( {3;3; - 3} \right)\), \(A',\,\,B',\,\,C'\) thỏa mãn \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \). Nếu \(G'\) là trọng tâm tam giác \(A'B'C'\) thì \(G'\) có tọa độ là: