Câu hỏi Đáp án 3 năm trước 80

Phương trình \({2^{{{\log }_5}\left( {x + 3} \right)}} = x\) có tất cả bao nhiêu nghiệm?

A.

$1$


Đáp án chính xác ✅

B.

$2$


C.

$3$


D.

$0$


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Điều kiện: \(x >  - 3.\)

Do ${2^{{{\log }_5}\left( {x + 3} \right)}} > 0$ nên để phương trình có nghiệm thì \(x > 0.\)

Lấy logarit cơ số \(2\) của hai vế phương trình, ta được ${\log _5}\left( {x + 3} \right) = {\log _2}x$.

Đặt $t = {\log _5}\left( {x + 3} \right) = {\log _2}x$$ \Rightarrow \left\{ \begin{array}{l}x + 3 = {5^t}\\x = {2^t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {5^t} - 3\\x = {2^t}\end{array} \right.$ $ \Leftrightarrow {5^t} - 3 = {2^t} \Leftrightarrow {5^t} = {3.1^t} + {2^t}$

Chia hai vế phương trình cho ${5^t}$, ta được $1 = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$.

Đây là phương trình hoành độ giao điểm của đường \(y = 1\) (hàm hằng) và đồ thị hàm số $y = 3.{\left( {\dfrac{1}{5}} \right)^t} + {\left( {\dfrac{2}{5}} \right)^t}$ (hàm số này nghịch biến vì nó là tổng của hai hàm số nghịch biến).

Do đó phương trình có nghiệm duy nhất. Nhận thấy \(t = 1\) thỏa mãn phương trình.

Với \(t = 1 \Rightarrow x = {2^t} = 2\left( {TM} \right).\)

Vậy phương trình có nghiệm duy nhất.

Hướng dẫn giải:

- Logarit cơ số \(2\) hai vế đưa về phương trình logarit.

- Đặt ẩn phụ đưa phương trình về phương trình mũ với ẩn mới.

- Giải phương trình mới bằng phương pháp xét hàm đặc trưng.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $

Xem lời giải » 3 năm trước 136
Câu 2: Trắc nghiệm

Cho $a, b$ là các số thực, thỏa mãn \(0 < a < 1 < b\), khẳng định nào sau đây là đúng?

Xem lời giải » 3 năm trước 131
Câu 3: Trắc nghiệm

Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.

Đề kiểm tra học kì 1 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 129
Câu 4: Trắc nghiệm

Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng

Xem lời giải » 3 năm trước 123
Câu 5: Trắc nghiệm

Cho các số thực dương $ a, b, x, y $ với \(a \ne 1\), \(b \ne 1\). Khẳng định nào sau đây là khẳng định sai?

Xem lời giải » 3 năm trước 121
Câu 6: Trắc nghiệm

Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x}  + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.

Xem lời giải » 3 năm trước 121
Câu 7: Trắc nghiệm

Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?

Xem lời giải » 3 năm trước 120
Câu 8: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\)  Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \)  là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)

Đề kiểm tra học kì 1 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 120
Câu 9: Trắc nghiệm

Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?

Xem lời giải » 3 năm trước 115
Câu 10: Trắc nghiệm

Cho hàm số \(y = {x^\alpha }\) có đồ thị như hình dưới. Điều kiện của \(\alpha \) là:

Đề kiểm tra học kì 1 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 114
Câu 11: Trắc nghiệm

Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = 30^0\). Tính thể tích khối chóp \(S.\,ABC.\)

Xem lời giải » 3 năm trước 112
Câu 12: Trắc nghiệm

Hình dưới đây là đồ thị của hàm số nào?

Đề kiểm tra học kì 1 - Đề số 3 - ảnh 1

Xem lời giải » 3 năm trước 106
Câu 13: Trắc nghiệm

Gọi $m\;$ là giá trị để hàm số $y = \dfrac{{x - {m^2}}}{{x + 8}}$ có giá trị nhỏ nhất trên $\left[ {0;3} \right]$ bằng $ - 2.$ Mệnh đề nào sau đây là đúng?

Xem lời giải » 3 năm trước 103
Câu 14: Trắc nghiệm

Công thức nào sau đây là công thức tăng trưởng mũ?

Xem lời giải » 3 năm trước 103
Câu 15: Trắc nghiệm

Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:

Xem lời giải » 3 năm trước 100

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »