Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Đồ thị hàm số có $2$ đường tiệm cận là
- Tiệm cận đứng $x = 2$
- Tiệm cận ngang $y = - 1$
Hướng dẫn giải:
$x = {x_o}$ là tiệm cận đứng của đồ thị hàm số $y = f\left( x \right)$ nếu: $\left[ \begin{gathered} \mathop {\lim }\limits_{x \to x_o^ - } \,f\left( x \right) = + \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) = - \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) = + \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ + } \,f\left( x \right) = - \infty \hfill \\ \end{gathered} \right.$
$y = {y_o}$ là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ nếu $\left[ \begin{gathered} \mathop {\lim }\limits_{x \to + \infty } \,f\left( x \right) = {y_o} \hfill \\ \mathop {\lim }\limits_{x \to - \infty } \,f\left( x \right) = {y_o} \hfill \\ \end{gathered} \right.$
Giải thích thêm:
Có thể kết luận nhanh bằng cách áp dụng tính chất hàm phân thức $y = \dfrac{{ax + b}}{{cx + d}}\left( {ac \ne bd} \right)$ sẽ có hai tiệm cận $x = - \dfrac{d}{c};y = \dfrac{a}{c}$.
Đồ thị hàm số có $2$ đường tiệm cận là
- Tiệm cận đứng $x = 2$
- Tiệm cận ngang $y = - 1$
Hướng dẫn giải:
$x = {x_o}$ là tiệm cận đứng của đồ thị hàm số $y = f\left( x \right)$ nếu: $\left[ \begin{gathered} \mathop {\lim }\limits_{x \to x_o^ - } \,f\left( x \right) = + \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) = - \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) = + \infty \hfill \\ \mathop {\lim }\limits_{x \to x_o^ + } \,f\left( x \right) = - \infty \hfill \\ \end{gathered} \right.$
$y = {y_o}$ là tiệm cận ngang của đồ thị hàm số $y = f\left( x \right)$ nếu $\left[ \begin{gathered} \mathop {\lim }\limits_{x \to + \infty } \,f\left( x \right) = {y_o} \hfill \\ \mathop {\lim }\limits_{x \to - \infty } \,f\left( x \right) = {y_o} \hfill \\ \end{gathered} \right.$
Giải thích thêm:
Có thể kết luận nhanh bằng cách áp dụng tính chất hàm phân thức $y = \dfrac{{ax + b}}{{cx + d}}\left( {ac \ne bd} \right)$ sẽ có hai tiệm cận $x = - \dfrac{d}{c};y = \dfrac{a}{c}$.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $
Cho $a, b$ là các số thực, thỏa mãn \(0 < a < 1 < b\), khẳng định nào sau đây là đúng?
Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Cho các số thực dương $ a, b, x, y $ với \(a \ne 1\), \(b \ne 1\). Khẳng định nào sau đây là khẳng định sai?
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\) Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \) là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Cho hàm số \(y = {x^\alpha }\) có đồ thị như hình dưới. Điều kiện của \(\alpha \) là:
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = 30^0\). Tính thể tích khối chóp \(S.\,ABC.\)
Gọi $m\;$ là giá trị để hàm số $y = \dfrac{{x - {m^2}}}{{x + 8}}$ có giá trị nhỏ nhất trên $\left[ {0;3} \right]$ bằng $ - 2.$ Mệnh đề nào sau đây là đúng?
Công thức nào sau đây là công thức tăng trưởng mũ?
Hỏi có bao nhiêu giá trị \(m\) nguyên trong đoạn \(\left[ { - 2017;2017} \right]\) để phương trình \(\log mx = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?