Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\) Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \) là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)
A.
\(\tan \alpha = \dfrac{{\sqrt 3 }}{3}\)
B.
\(\tan \alpha = \dfrac{{2\sqrt 5 }}{5}\)
C.
\(\tan \alpha = \dfrac{{\sqrt 7 }}{7}\)
D.
\(\tan \alpha = \dfrac{{\sqrt 5 }}{5}\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) (do \(\Delta SAB\) cân tại \(S\))
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \bot AB;\,\,\,SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)
Hay \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right) \Rightarrow CH\) là hình chiều của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\)
Do đó góc giữa \(SC\) và mặt đáy là góc \(SCH.\)
Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} \Leftrightarrow \dfrac{{4{a^3}}}{3} = \dfrac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\).
Xét tam giác \(BHC\) vuông tại \(B\), theo định lý Pytago ta có \(HC = \sqrt {B{H^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)
Xét tam giác \(SHC\) vuông tại \(H\) có \(\tan \angle SCH = \dfrac{{SH}}{{HC}} = \dfrac{a}{{a\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}\).
Hướng dẫn giải:
Xác định đường cao bằng kiến thức \(\left\{ \begin{array}{l}\left( P \right) \bot \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a \bot d;\,a \subset \left( P \right)\end{array} \right. \Leftrightarrow a \bot \left( Q \right)\)
Góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) là góc giữa đường thẳng \(d\) và đường thẳng \(d'\) là hình chiếu của \(d\) lên mặt phẳng \(\left( P \right).\)
Thể tích khối chóp \(V = \dfrac{1}{3}S.h\)
Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) (do \(\Delta SAB\) cân tại \(S\))
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \bot AB;\,\,\,SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)
Hay \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right) \Rightarrow CH\) là hình chiều của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\)
Do đó góc giữa \(SC\) và mặt đáy là góc \(SCH.\)
Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} \Leftrightarrow \dfrac{{4{a^3}}}{3} = \dfrac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\).
Xét tam giác \(BHC\) vuông tại \(B\), theo định lý Pytago ta có \(HC = \sqrt {B{H^2} + B{C^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)
Xét tam giác \(SHC\) vuông tại \(H\) có \(\tan \angle SCH = \dfrac{{SH}}{{HC}} = \dfrac{a}{{a\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}\).
Hướng dẫn giải:
Xác định đường cao bằng kiến thức \(\left\{ \begin{array}{l}\left( P \right) \bot \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a \bot d;\,a \subset \left( P \right)\end{array} \right. \Leftrightarrow a \bot \left( Q \right)\)
Góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) là góc giữa đường thẳng \(d\) và đường thẳng \(d'\) là hình chiếu của \(d\) lên mặt phẳng \(\left( P \right).\)
Thể tích khối chóp \(V = \dfrac{1}{3}S.h\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $
Cho $a, b$ là các số thực, thỏa mãn \(0 < a < 1 < b\), khẳng định nào sau đây là đúng?
Cho hàm số $y = f(x)$ liên tục và có đạo hàm cấp hai trên $R$. Đồ thị của các hàm số $y = f(x),y = f'(x),y = f''(x)$ lần lượt là các đường cong nào trong hình vẽ bên.
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Cho các số thực dương $ a, b, x, y $ với \(a \ne 1\), \(b \ne 1\). Khẳng định nào sau đây là khẳng định sai?
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Cho hàm số \(y = {x^\alpha }\) có đồ thị như hình dưới. Điều kiện của \(\alpha \) là:
Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = 30^0\). Tính thể tích khối chóp \(S.\,ABC.\)
Gọi $m\;$ là giá trị để hàm số $y = \dfrac{{x - {m^2}}}{{x + 8}}$ có giá trị nhỏ nhất trên $\left[ {0;3} \right]$ bằng $ - 2.$ Mệnh đề nào sau đây là đúng?
Công thức nào sau đây là công thức tăng trưởng mũ?
Số đường tiệm cận của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là: