Hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {x - 3} \right)\) . Phát biểu nào sau đây là đúng ?
A.
Hàm số không có điểm cực trị.
B.
Hàm số có hai điểm cực trị .
C.
Hàm số có 1 điểm cực đại
D.
Hàm số có đúng một điểm cực trị .
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
\(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).
Từ đó ta có bảng biến thiên như sau:

Từ bảng biến thiên ta thấy hàm số có \(1\) điểm cực trị duy nhất.
Hướng dẫn giải:
- Tìm nghiệm của \(f'\left( x \right) = 0\).
- Xét dấu của \(f'\left( x \right)\) suy ra số điểm cực trị.
\(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).
Từ đó ta có bảng biến thiên như sau:
Từ bảng biến thiên ta thấy hàm số có \(1\) điểm cực trị duy nhất.
Hướng dẫn giải:
- Tìm nghiệm của \(f'\left( x \right) = 0\).
- Xét dấu của \(f'\left( x \right)\) suy ra số điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho hàm số \(y=\frac{x-1}{2x-3}\). Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ I đến tiếp tuyến của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng
Vật thể nào trong các vật thể sau không phải là khối đa diện?