Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) có \(\left\{ \begin{align}& \xrightarrow{TCN}y=\dfrac{2}{c}=2\Rightarrow c=1 \\ & \xrightarrow{TCD}x=-\dfrac{d}{c}=-\dfrac{d}{1}=-1\Rightarrow d=1 \\ \end{align} \right.\)
Hàm số có dạng \(y = \dfrac{{2x + b}}{{x + 1}}\left( C \right)\).
Ta có điểm \(\left( {0;1} \right) \in \left( C \right)\).
Thay \(x = 0\) và \(y = 1\) vào hàm số ta được \(1 = \dfrac{{2.0 + b}}{{0 + 1}} \Rightarrow b = 1\) \( \Rightarrow b + c + d = 3\).
Hướng dẫn giải:
- Tìm các tiệm cận đứng, ngang của đồ thị hàm số \( \Rightarrow c,d\).
- Tìm điểm đi qua của đồ thị hàm số \( \Rightarrow b\).
- Thay các giá trị tìm được vào kiểm tra các đáp án.
Giải thích thêm:
HS thường nhầm lẫn trong việc xác định tiệm cận đứng \(x = \dfrac{d}{c}\) dẫn đến tính ra \(d = - 1\) và chọn nhầm đáp án A là sai.
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) có \(\left\{ \begin{align}& \xrightarrow{TCN}y=\dfrac{2}{c}=2\Rightarrow c=1 \\ & \xrightarrow{TCD}x=-\dfrac{d}{c}=-\dfrac{d}{1}=-1\Rightarrow d=1 \\ \end{align} \right.\)
Hàm số có dạng \(y = \dfrac{{2x + b}}{{x + 1}}\left( C \right)\).
Ta có điểm \(\left( {0;1} \right) \in \left( C \right)\).
Thay \(x = 0\) và \(y = 1\) vào hàm số ta được \(1 = \dfrac{{2.0 + b}}{{0 + 1}} \Rightarrow b = 1\) \( \Rightarrow b + c + d = 3\).
Hướng dẫn giải:
- Tìm các tiệm cận đứng, ngang của đồ thị hàm số \( \Rightarrow c,d\).
- Tìm điểm đi qua của đồ thị hàm số \( \Rightarrow b\).
- Thay các giá trị tìm được vào kiểm tra các đáp án.
Giải thích thêm:
HS thường nhầm lẫn trong việc xác định tiệm cận đứng \(x = \dfrac{d}{c}\) dẫn đến tính ra \(d = - 1\) và chọn nhầm đáp án A là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Cho hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 3;7} \right)\) và xác định tại hai điểm \(x = - 3;x = 7\). Chọn kết luận đúng:
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
