Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Hai hình chóp đều có chung đáy là các tam giác đều nên muốn bằng nhau chỉ cần các cạnh bên bằng nhau. Do đó khoảng cách từ hai đỉnh đến mặt đáy cũng bằng nhau.
Vậy hai đỉnh đối xứng nhau qua mặt đáy.
Hướng dẫn giải:
Sử dụng dấu hiệu: Hai tứ diện bằng nhau nếu chúng có các cạnh tương ứng bằng nhau.
Hai hình chóp đều có chung đáy là các tam giác đều nên muốn bằng nhau chỉ cần các cạnh bên bằng nhau. Do đó khoảng cách từ hai đỉnh đến mặt đáy cũng bằng nhau.
Vậy hai đỉnh đối xứng nhau qua mặt đáy.
Hướng dẫn giải:
Sử dụng dấu hiệu: Hai tứ diện bằng nhau nếu chúng có các cạnh tương ứng bằng nhau.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Trong các hàm số dưới đây, hàm số nào không đồng biến trên $R?$
Hàm số $y = f\left( x \right) = a{x^3} + b{x^2} + cx + d$ có đồ thị như hình vẽ, chọn kết luận đúng:
