Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
TXĐ: $x \ne 0$.
$f'\left( x \right) = \dfrac{{x\cos x - \sin x}}{{{x^2}}} < 0 \forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]$
Thật vậy,
Xét hàm \(g\left( x \right) = x\cos x - \sin x\) trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\) có:
\(g'\left( x \right) = \cos x - x\sin x - \cos x\) \( = - x\sin x < 0,\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)
Do đó hàm số \(g\left( x \right)\) nghịch biến trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\).
Suy ra \(g\left( x \right) \le g\left( {\dfrac{\pi }{6}} \right)\) \( = \dfrac{\pi }{6}.\cos \dfrac{\pi }{6} - \sin \dfrac{\pi }{6} < 0\) hay \(x\cos x - \sin x < 0\) với \(\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)
$ \Rightarrow \mathop {\max }\limits_{\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]} f\left( x \right) = f\left( {\dfrac{\pi }{6}} \right) = \dfrac{3}{\pi }$.
Hướng dẫn giải:
Sử dụng phương pháp tìm GTLN, GTNN của hàm số:
- Tính \(y'\) và tìm các nghiệm của \(y' = 0\).
- Tính giá trị hàm số tại các điểm đặc biệt và kết luận.
TXĐ: $x \ne 0$.
$f'\left( x \right) = \dfrac{{x\cos x - \sin x}}{{{x^2}}} < 0 \forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]$
Thật vậy,
Xét hàm \(g\left( x \right) = x\cos x - \sin x\) trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\) có:
\(g'\left( x \right) = \cos x - x\sin x - \cos x\) \( = - x\sin x < 0,\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)
Do đó hàm số \(g\left( x \right)\) nghịch biến trên \(\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\).
Suy ra \(g\left( x \right) \le g\left( {\dfrac{\pi }{6}} \right)\) \( = \dfrac{\pi }{6}.\cos \dfrac{\pi }{6} - \sin \dfrac{\pi }{6} < 0\) hay \(x\cos x - \sin x < 0\) với \(\forall x \in \left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]\)
$ \Rightarrow \mathop {\max }\limits_{\left[ {\dfrac{\pi }{6};\dfrac{\pi }{3}} \right]} f\left( x \right) = f\left( {\dfrac{\pi }{6}} \right) = \dfrac{3}{\pi }$.
Hướng dẫn giải:
Sử dụng phương pháp tìm GTLN, GTNN của hàm số:
- Tính \(y'\) và tìm các nghiệm của \(y' = 0\).
- Tính giá trị hàm số tại các điểm đặc biệt và kết luận.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(R\). Nếu hàm số \(f\left( x \right)\) nghịch biến trên \(R\) thì:
Cho hàm số \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e,\) với \(a,b,c,d,e \in \mathbb{R}.\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Trong các khẳng định sau, khẳng định nào đúng?
Đường cong ở hình bên là đồ thị hàm số \(y=\dfrac{ax+2}{cx+b}\) với \(a,b,c\) là các số thực. Mệnh đề nào sau đây đúng?

Cho hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) có bảng biến thiên:
Giá trị của \(2{c^2} - 5{d^2}\) bằng
Cho hàm số \(y = {x^3} + 2m{x^2} + \left( {m + 3} \right)x + 4\,\,\,\left( {{C_m}} \right)\). Giá trị của tham số \(m\) để đường thẳng \(\left( d \right):y = x + 4\) cắt \(\left( {{C_m}} \right)\) tại ba điểm phân biệt \(A\left( {0;4} \right),\,\,B,\,\,C\) sao cho tam giác \(KBC\) có diện tích bằng \(8\sqrt 2 \) với điểm \(K\left( {1;3} \right)\) là:
Hàm số $y = f\left( x \right) = a{x^3} + b{x^2} + cx + d$ có đồ thị như hình vẽ, chọn kết luận đúng:

Tiếp tuyến của đồ thị hàm số $y = \dfrac{{{x^3}}}{3} - 2{x^2} + x + 2$ song song với đường thẳng $y = - 2x + 5$ có phương trình là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = 1,\,\,\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?
Cho hai số thực \(x,\,y\) thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10} = \sqrt {6 + 4x - {x^2}} \). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}} - a} \right|\). Có bao nhiêu giá trị nguyên thuộc đoạn \(\left[ { - 10;\,10} \right]\) của tham số \(a\) để \(M \ge 2m\)?
Tìm tất cả các giá trị của $m$ để hàm số $y = - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Cho hàm số y = f (x) có đồ thị như hình bên. Mệnh đề nào dưới đây đúng?
Biết rằng hàm số \(y = a{x^3} + b{x^2} + cx + d\,\,\left( {a\not = 0} \right)\) có đồ thị là một trong các dạng dưới đây:
Mệnh đề nào sau đây là đúng?