Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
A.
\(V = \dfrac{1}{3}{S_d}.l\)
B.
\(V = \dfrac{1}{3}{S_d}\sqrt {{h^2} - {r^2}} \)
C.
\(V = \dfrac{1}{3}{S_d}\sqrt {{l^2} - {r^2}} \)
D.
\(V = {S_d}\sqrt {{l^2} - {r^2}} \)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: c
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow h = \sqrt {{l^2} - {r^2}} \Rightarrow V = \dfrac{1}{3}{S_d}.h = \dfrac{1}{3}{S_d}.\sqrt {{l^2} - {r^2}} \)
Hướng dẫn giải:
- Tính chiều cao \(h\) sử dụng công thức \({l^2} = {h^2} + {r^2}\)
- Tính thể tích khối nón \(V = \dfrac{1}{3}{S_d}.h\).
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án A vì nhớ nhầm công thức.
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow h = \sqrt {{l^2} - {r^2}} \Rightarrow V = \dfrac{1}{3}{S_d}.h = \dfrac{1}{3}{S_d}.\sqrt {{l^2} - {r^2}} \)
Hướng dẫn giải:
- Tính chiều cao \(h\) sử dụng công thức \({l^2} = {h^2} + {r^2}\)
- Tính thể tích khối nón \(V = \dfrac{1}{3}{S_d}.h\).
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án A vì nhớ nhầm công thức.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mặt cầu \(S\left( {I;R} \right)\) và mặt phẳng \(\left( P \right)\) cách I một khoảng bằng \(\frac{R}{2}\). Khi đó giao của \(\left( P \right)\) và \(\left( S \right)\) là đường tròn có chu vi bằng:
Cho hàm số $y = f\left( x \right)$ xác định, liên tục trên $R$ có bảng biến thiên:

Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Cho mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( P \right)\) cắt nhau tại nhiều hơn một điểm. Giao tuyến của chúng là:
Tâm đối xứng của đồ thị hàm số bậc ba có hoành độ là nghiệm của phương trình
Cho hàm số \(y = f\left( x \right)\) đồng biến và có đạo hàm trên \(\left( { - 5;5} \right)\). Khi đó:
Tính thể tích \(V\) của khối trụ ngoại tiếp hình lập phương có cạnh bằng $a$.
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Tìm $m$ để phương trình ${x^5} + {x^3} - \sqrt {1 - x} + m = 0$ có nghiệm trên $\left( { - \infty ;1} \right]$.
Cho hàm số $y = - {x^3} + 3m{x^2} - 3m - 1$ với \(m\) là tham số thực. Tìm giá trị của \(m\) để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng $d:x + 8y - 74 = 0$.
Một người gửi vào ngân hàng số tiền $A$ đồng, lãi suất $r\% $ mỗi tháng theo hình thức lãi kép, gửi theo phương thức có kì hạn $3$ tháng. Công thức tính số tiền cả vốn lẫn lãi mà người đó có sau $2$ năm là:
Gọi $m$ là giá trị nhỏ nhất của hàm số $y = x - 1 + \dfrac{4}{{x - 1}}$ trên khoảng $\left( {1; + \infty {\rm{\;}}} \right)$. Tìm $m?$
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
