Chọn khẳng định đúng:
A.
Tâm đối xứng của đồ thị hàm số $y = \dfrac{1}{x}$ là $\left( {0;0} \right)$.
B.
Đồ thị hàm số $y = \dfrac{1}{x}$ không có tâm đối xứng.
C.
Hàm số $y = \dfrac{1}{x}$ không có tâm đối xứng.
D.
Hàm số $y = \dfrac{1}{x}$ có tâm đối xứng là $\left( {0;0} \right)$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Hàm số $y = \dfrac{1}{x}$ là hàm số lẻ nên đồ thị hàm số nhận điểm $\left( {0;0} \right)$ làm tâm đối xứng.
Hướng dẫn giải:
Sử dụng tính chất hàm số lẻ: Đồ thị hàm số lẻ luôn nhận điểm $\left( {0;0} \right)$ là tâm đối xứng.
Giải thích thêm:
Cần chú ý: Không có khái niệm tâm đối xứng của hàm số nên các đáp án C và D không cần xét tính đúng sai.
Hàm số $y = \dfrac{1}{x}$ là hàm số lẻ nên đồ thị hàm số nhận điểm $\left( {0;0} \right)$ làm tâm đối xứng.
Hướng dẫn giải:
Sử dụng tính chất hàm số lẻ: Đồ thị hàm số lẻ luôn nhận điểm $\left( {0;0} \right)$ là tâm đối xứng.
Giải thích thêm:
Cần chú ý: Không có khái niệm tâm đối xứng của hàm số nên các đáp án C và D không cần xét tính đúng sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Khối đa diện lồi có \(8\) đỉnh và \(6\) mặt thì có số cạnh là:
Giá trị lớn nhất của hàm số $y = x - \dfrac{1}{x}$ trên $\left( { - \infty ; - 1} \right]$ là:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?

Hai hình chóp tam giác đều có chung đáy là tam giác đều và đỉnh thuộc hai phía khác nhau so với mặt đáy. Hai hình này bằng nhau khi:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:

Với các giá trị thực của tham số \(m\), phương trình \(f\left( x \right)=m\) có nhiều nhất bao nhiêu nghiệm?
Tìm tất cả các giá trị của $m$ để hàm số $y = \dfrac{{m{x^3}}}{3} - m{x^2} + x - 1$ có cực đại và cực tiểu.
Đồ thị hàm số $y = \dfrac{{2x + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng:
Cho điểm $I\left( {0;4} \right)$ và đường cong $\left( C \right):y = - {x^2} + 3x$. Phương trình $\left( C \right)$ đối với hệ tọa độ $\left( {IXY} \right)$ là:
Đồ thị hàm số \(y = \dfrac{{2x + b}}{{cx + d}}\) như hình vẽ bên:

Chọn kết luận đúng:
Cho lăng trụ đều \(ABC.A'B'C'\), cạnh đáy bằng a, góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(60^\circ \). Tính thể tích khối lăng trụ đó.
Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{x - 1}}{{ - 3x + 2}}\) là?
Cho hàm số \(y=\frac{x-1}{2x-3}\). Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ I đến tiếp tuyến của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng
Vật thể nào trong các vật thể sau không phải là khối đa diện?