Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A} = \dfrac{{ - 2i}}{1} = - 2i\\{z_1}{z_2} = \dfrac{C}{A} = \dfrac{i}{1} = i\end{array} \right.\)
Vậy \({z_1} + {z_2} = - 2i\).
Hướng dẫn giải:
Sử dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A}\\{z_1}{z_2} = \dfrac{C}{A}\end{array} \right.\)
Giải thích thêm:
Một số em chọn nhầm đáp án A vì không nhớ đúng công thức tổng hai nghiệm.
Ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A} = \dfrac{{ - 2i}}{1} = - 2i\\{z_1}{z_2} = \dfrac{C}{A} = \dfrac{i}{1} = i\end{array} \right.\)
Vậy \({z_1} + {z_2} = - 2i\).
Hướng dẫn giải:
Sử dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A}\\{z_1}{z_2} = \dfrac{C}{A}\end{array} \right.\)
Giải thích thêm:
Một số em chọn nhầm đáp án A vì không nhớ đúng công thức tổng hai nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
Phương trình bậc hai trên tập số phức có thể có mấy nghiệm?
Biết rằng phương trình ${z^2} + bz + c = 0\left( {b;c \in R} \right)$ có một nghiệm phức là ${z_1} = 1 + 2i$ . Khi đó:
Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:
Hai số phức \(z = a + bi,z' = a + b'i\) bằng nhau nếu:
Số phức \(w\) là căn bậc hai của số phức \(z\) nếu:
Cho số phức $z = 1 + i + {i^2} + {i^3} + ... + {i^9}$. Khi đó:
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?
Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).
Cho số phức \(z = a + bi(ab \ne 0)\). Tìm phần thực của số phức \({\rm{w}} = \dfrac{1}{{{z^2}}}\).
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Cho số phức $z = 3-2i$. Tìm phần thực và phần ảo của số phức \(\overline z \)