Câu hỏi Đáp án 3 năm trước 109

Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).

A.

\(P = \sqrt {13}  + \sqrt {73} \)


B.

\(P = \dfrac{{5\sqrt 2  + 2\sqrt {73} }}{2}\)  


Đáp án chính xác ✅

C.

\(P = 5\sqrt 2  + \sqrt {73} \)  


D.

\(P = \dfrac{{5\sqrt 2  + \sqrt {73} }}{2}\)  


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Gọi $z=x+yi\left( x,y\in R \right)$

Trên mặt phẳng tọa độ $Oxy$ gọi $P\left( {x;y} \right)$ là điểm biểu diễn của số phức $z$

Gọi $A\left( {-2;1} \right),B\left( {4;7} \right)$ thì

$\begin{array}{l}AB = 6\sqrt 2  = \left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right|\\ = \sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {y - 1} \right)}^2}}  + \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {y - 7} \right)}^2}}  = PA + PB\end{array}$

Suy ra tập hợp các điểm $P$ thỏa mãn chính là đoạn thẳng AB

Có $\left| {z - 1 + i} \right| = \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y + 1} \right)}^2}}  = PC$ với $C\left( {1;-1} \right)$

Do đó \(P{C_{\min }}\) khi \(P\) là hình chiếu của \(C\) lên \(AB\) và \(P{C_{\max }}\) khi \(P \equiv B\)

Suy ra $M = CB = \sqrt {73} $.

Ta có: \(AB:\dfrac{{x + 2}}{{4 + 2}} = \dfrac{{y - 1}}{{7 - 1}} \Leftrightarrow x - y + 3 = 0\)\( \Rightarrow m=d\left( {C,AB} \right) = \dfrac{{\left| {1 - \left( { - 1} \right) + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{5}{{\sqrt 2 }}\)

$\Rightarrow M + m = \dfrac{{5\sqrt 2  + 2\sqrt {73} }}{2}$

Lời giải - Đề kiểm tra 1 tiết chương 4: Số phức - Đề số 1 - ảnh 1

Hướng dẫn giải:

- Gọi $z = x + yi$ và tìm tập hợp điểm biểu diễn số phức $z$ thỏa mãn bài toán. 

- Biểu diễn tập hợp điểm đó trên hệ trục tọa độ từ đó tìm GTLN, GTNN của biểu thức đã cho.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Tính môđun của số phức $z$ biết $\overline z  = \left( {4 - 3i} \right)\left( {1 + i} \right)$.

Xem lời giải » 3 năm trước 103
Câu 2: Trắc nghiệm

Phương trình bậc hai trên tập số phức có thể có mấy nghiệm?

Xem lời giải » 3 năm trước 91
Câu 3: Trắc nghiệm

Biết rằng phương trình ${z^2} + bz + c = 0\left( {b;c \in R} \right)$ có một nghiệm phức là ${z_1} = 1 + 2i$ . Khi đó:

Xem lời giải » 3 năm trước 89
Câu 4: Trắc nghiệm

Số phức \(w\) là căn bậc hai của số phức \(z\) nếu:

Xem lời giải » 3 năm trước 86
Câu 5: Trắc nghiệm

Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:

Xem lời giải » 3 năm trước 86
Câu 6: Trắc nghiệm

Hai số phức \(z = a + bi,z' = a + b'i\) bằng nhau nếu:

Xem lời giải » 3 năm trước 86
Câu 7: Trắc nghiệm

Cho số phức $z = 1 + i + {i^2} + {i^3} + ... + {i^9}$. Khi đó:

Xem lời giải » 3 năm trước 83
Câu 8: Trắc nghiệm

Căn bậc hai của số \(a =  - 3\) là:

Xem lời giải » 3 năm trước 81
Câu 9: Trắc nghiệm

Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?

Xem lời giải » 3 năm trước 80
Câu 10: Trắc nghiệm

Cho số phức \(z = a + bi(ab \ne 0)\). Tìm phần thực của số phức \({\rm{w}} = \dfrac{1}{{{z^2}}}\).

Xem lời giải » 3 năm trước 78
Câu 11: Trắc nghiệm

Cho số phức $z = 1 + \sqrt {3}i $. Khi đó

Xem lời giải » 3 năm trước 78
Câu 12: Trắc nghiệm

Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).

Xem lời giải » 3 năm trước 78
Câu 13: Trắc nghiệm

Cho số phức $z = 3-2i$. Tìm phần thực và phần ảo của số phức \(\overline z \)

Xem lời giải » 3 năm trước 76
Câu 14: Trắc nghiệm

Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)

Xem lời giải » 3 năm trước 76
Câu 15: Trắc nghiệm

Cho số phức $z$ thỏa mãn $\left( {2-i} \right)z = 7-i$ . Hỏi điểm biểu diễn của $z$ là điểm nào trong các điểm $M,N,P,Q$ ở hình dưới.

Đề kiểm tra 1 tiết chương 4: Số phức - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 75

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »