Câu hỏi Đáp án 3 năm trước 73

Cho tứ diện \(ABCD\) có \(G\) là điểm thỏa mãn \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \). Mặt phẳng thay đổi chứa \(BG\) và cắt \(AC,\,\,AD\) lần lượt tại \(M\) và \(N\). Giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\) là

A. \(\dfrac{3}{8}\)

B. \(\dfrac{4}{9}\)

Đáp án chính xác ✅

C. \(\dfrac{1}{2}\)

D. \(\dfrac{5}{9}\)

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Gọi \(O\) là trọng tâm tam giác \(BCD\)

\(\begin{array}{l} \Rightarrow \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 3\overrightarrow {GO} \\ \Rightarrow \overrightarrow {GA}  + 3\overrightarrow {GO}  = \overrightarrow 0 \\ \Rightarrow \overrightarrow {GA}  =  - 3\overrightarrow {GO} \\ \Rightarrow \dfrac{{AG}}{{AO}} = \dfrac{3}{4}\end{array}\)

Trong \(\left( {ABE} \right)\) gọi \(F = BG \cap AE\,\,\left( {F \in AE} \right)\).

Lấy \(M \in AC\), trong \(\left( {ACD} \right)\) gọi \(N = MF \cap AD\,\,\,\left( {N \in AD} \right)\), khi đó ta có mặt phẳng chứa \(BG\) cắt \(AC,\,\,AD\) lần lượt tại \(M,\,\,N\) chính là \(\left( {BMN} \right)\).

Áp dụng định lí Menelaus trong tam giác \(AOE\), cát tuyến \(BGF\):

\(\dfrac{{GA}}{{GO}}.\dfrac{{BO}}{{BE}}.\dfrac{{FE}}{{FA}} = 1 \Rightarrow 3.\dfrac{2}{3}.\dfrac{{FE}}{{FA}} = 1 \Rightarrow \dfrac{{FE}}{{FA}} = \dfrac{1}{2}\) \( \Rightarrow \dfrac{{AF}}{{AE}} = \dfrac{2}{3}\) \( \Rightarrow F\) là trọng tâm tam giác \(ACD\).

Trong \(\left( {ACD} \right)\) kéo dài \(MN\) cắt \(CD\) tại \(H\). Đặt \(\dfrac{{AM}}{{AC}} = x\) \(\left( {0 < x < 1} \right)\).

 Áp dụng định lí Menelaus trong tam giác \(ACE\), cát tuyến \(MHF\):

\(\dfrac{{MA}}{{MC}}.\dfrac{{HC}}{{HE}}.\dfrac{{FE}}{{FA}} = 1 \Rightarrow \dfrac{x}{{1 - x}}.\dfrac{{HC}}{{HE}}.\dfrac{1}{2} = 1\)\( \Rightarrow \dfrac{{HC}}{{HE}} = \dfrac{{2\left( {1 - x} \right)}}{x}\)

\(\begin{array}{l} \Rightarrow HE = \dfrac{x}{{2\left( {1 - x} \right)}}HC\\ \Rightarrow HC + CE = \dfrac{x}{{2\left( {1 - x} \right)}}HC\\ \Rightarrow CE = \dfrac{{3x - 2}}{{2\left( {1 - x} \right)}}HC\end{array}\)

Ta có:

\(\begin{array}{l}HD = HC + 2CE\\\,\,\,\,\,\,\,\,\, = HC + \dfrac{{3x - 2}}{{1 - x}}HC = \dfrac{{2x - 1}}{{1 - x}}HC\\ \Rightarrow \dfrac{{HE}}{{HD}} = \dfrac{x}{{2\left( {1 - x} \right)}}:\dfrac{{2x - 1}}{{1 - x}} = \dfrac{x}{{2\left( {2x - 1} \right)}}\end{array}\)

Áp dụng định lí Menelaus trong tam giác \(AED\), cát tuyến \(MFN\):

\(\begin{array}{l}\dfrac{{FA}}{{FE}}.\dfrac{{HE}}{{HD}}.\dfrac{{ND}}{{NA}} = 1 \Rightarrow 2.\dfrac{x}{{2\left( {2x - 1} \right)}}.\dfrac{{ND}}{{NA}} = 1\\ \Rightarrow \dfrac{{ND}}{{NA}} = \dfrac{{2x - 1}}{x} \Rightarrow \dfrac{{NA}}{{ND}} = \dfrac{x}{{2x - 1}}\\ \Rightarrow \dfrac{{NA}}{{NA + ND}} = \dfrac{x}{{x + 2x - 1}} = \dfrac{x}{{3x - 1}}\\ \Rightarrow \dfrac{{AN}}{{AD}} = \dfrac{x}{{3x - 1}}\end{array}\).

Khi đó ta có \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}} = \dfrac{{AM}}{{AC}}.\dfrac{{AN}}{{AD}} = x.\dfrac{x}{{3x - 1}} = \dfrac{{{x^2}}}{{3x - 1}}\,\,\left( {x > \dfrac{1}{3}} \right)\).

Xét hàm số \(f\left( x \right) = \dfrac{{{x^2}}}{{3x - 1}}\,\,\left( {x > \dfrac{1}{3}} \right)\) ta có \(f'\left( x \right) = \dfrac{{2x\left( {3x - 1} \right) - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}} = \dfrac{{3{x^2} - 2x}}{{{{\left( {3x - 1} \right)}^2}}}\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\left( {ktm} \right)\\x = \dfrac{2}{3}\end{array} \right.\)

BBT:

Dựa vào BBT ta thấy \(\mathop {\min }\limits_{\left( {\frac{1}{3}; + \infty } \right)} f\left( x \right) = f\left( {\dfrac{2}{3}} \right) = \dfrac{4}{9}\).

Vậy giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}} = \dfrac{4}{9}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp tứ giác đều $S.ABCD$ có chiều cao $h$, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Xem lời giải » 3 năm trước 105
Câu 2: Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có đáy là hình vuông, \(BD = 2a,\) góc giữa hai mặt phẳng \(\left( {A'B{\rm{D}}} \right)\) và \(\left( {ABCD} \right)\) bằng \({30^0}\). Thể tích của khối hộp chữ nhật đã cho bằng

Xem lời giải » 3 năm trước 103
Câu 3: Trắc nghiệm

Mệnh đề nào sau đây là mệnh đề đúng? 

Xem lời giải » 3 năm trước 102
Câu 4: Trắc nghiệm

Cho đoạn thẳng \(AB\). Mặt phẳng \(\left( P \right)\) là mặt phẳng trung trực của \(AB\) thì:

Xem lời giải » 3 năm trước 98
Câu 5: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 97
Câu 6: Trắc nghiệm

Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là \(6cm\) và \(8cm\), biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ. Tính thể tích khối lăng trụ

Xem lời giải » 3 năm trước 93
Câu 7: Trắc nghiệm

Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng \(4\) và tạo với đáy góc \({60^0}\). Thể tích của khối chóp đó là:

Xem lời giải » 3 năm trước 93
Câu 8: Trắc nghiệm

Cho khối chóp có thể tích \(V\), diện tích đáy là \(S\) và chiều cao \(h\). Chọn công thức đúng:

Xem lời giải » 3 năm trước 89
Câu 9: Trắc nghiệm

Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Xem lời giải » 3 năm trước 89
Câu 10: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?

Xem lời giải » 3 năm trước 88
Câu 11: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:

Xem lời giải » 3 năm trước 87
Câu 12: Trắc nghiệm

Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất:

Xem lời giải » 3 năm trước 86
Câu 13: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có diện tích đáy là \(16c{m^2}\), diện tích một mặt bên là \(8\sqrt 3 c{m^2}\). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 85
Câu 14: Trắc nghiệm

Đa diện đều loại \(\left\{ {5;3} \right\}\) có tên gọi nào dưới đây?

Xem lời giải » 3 năm trước 84
Câu 15: Trắc nghiệm

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(\sqrt 6 \). Biết rằng các mặt bên của hình chóp có diện tích bằng nhau và một trong các cạnh bên bằng \(3\sqrt 2 \). Tính thể tích nhỏ nhất của khối chóp \(S.ABC\)

Xem lời giải » 3 năm trước 83

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »